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A B S T R A C T

Cue combination occurs when two independent noisy perceptual estimates are merged together as a weighted
average, creating a unified estimate that is more precise than either single estimate alone. Surprisingly, this
effect has not been demonstrated compellingly in children under the age of 10 years, in contrast with the array of
other multisensory skills that children show even in infancy. Instead, across a wide variety of studies, precision
with both cues is no better than the best single cue – and sometimes worse. Here we provide the first consistent
evidence of cue combination in children from 7 to 10 years old. Across three experiments, participants showed
evidence of a bimodal precision advantage (Experiments 1a and 1b) and the majority were best-fit by a com-
bining model (Experiment 2). The task was to localize a target horizontally with a binaural audio cue and a noisy
visual cue in immersive virtual reality. Feedback was given as well, which could both (a) help participants judge
how reliable each cue is and (b) help correct between-cue biases that might prevent cue combination. Crucially,
our results show cue combination when feedback is only given on single cues – therefore, combination itself was
not a strategy learned via feedback. We suggest that children at 7–10 years old are capable of cue combination in
principle, but must have sufficient representations of reliabilities and biases in their own perceptual estimates as
relevant to the task, which can be facilitated through task-specific feedback.

1. Introduction

Cue combination is when two independent noisy perceptual esti-
mates are merged together as a weighted average, creating a unified
estimate that is more precise than either single estimate alone (Ernst &
Banks, 2002). This process is a key aspect of Bayesian Decision Theory
(Maloney & Mamassian, 2009), allowing people to deal in a near-op-
timal way with the different sources of sensory noise involved in per-
ceptual decisions. For example, when both looking at and holding an
object, we have information about its size from vision as well as from
touch. If we always take the approach of averaging the available esti-
mates while weighting each independent estimate by its precision, we
will always arrive at the most precise possible estimate of size. The
main alternatives would be strategies such as cue selection, where one
cue is used and the other is ignored, or more rote forms of integration
like taking an unweighted average of the estimates.

Since a seminal report in 2002 (Ernst & Banks, 2002), evidence has
accumulated that a Bayesian cue combination model is a good de-
scription of how adults typically perform when given multiple

independent cues to a singular perceptual judgement (Knill & Pouget,
2004; Pouget, Beck, Ma, & Latham, 2013). In particular, the strongest
single test for cue combination is a bimodal precision advantage. If two
cues are being combined (averaged) in a Bayes-like manner when they
are both available, judgements should be more precise with both cues
available than the best single cue alone. However, nearly all develop-
mental studies so far suggest that children up to the age of 10 years do
not show this effect (Adams, 2016; Burr & Gori, 2012; Dekker et al.,
2015; Gori, Del Viva, Sandini, & Burr, 2008; Jovanovic & Drewing,
2014; Nardini, Bedford, & Mareschal, 2010; Nardini, Begus, &
Mareschal, 2013; Nardini, Jones, Bedford, & Braddick, 2008; Petrini,
Remark, Smith, & Nardini, 2014). This is despite using a broad range of
tasks – uni-modal (different cues to depth but all within the visual
modality) as well as multi-modal (e.g. vision and touch); two-alter-
native forced-choice as well as more naturalistic responses (e.g. point
where it is). While this provides compelling evidence of late develop-
ment, the mechanisms underlying this late development remain un-
clear.

Here we answer a simple but critical question about the
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development of cue combination, shaping the direction of future
theory. Should we think of the emergence of cue combination as a re-
latively unified and sudden event at about 10 years old? If so, we might
favour unified explanations such as biological changes at the beginning
of puberty driving its emergence. Alternatively, does cue combination
emerge at meaningfully different time points for different tasks? If so,
we should develop a nuanced theory that pins the emergence of dif-
ferent aspects of cue combination to dissociable causes contained
within the earlier-emerging tasks. Clarity on this point is a key step
towards a full understanding of how cue combination develops and
what drives its development.

The potential applications of this knowledge range from the treat-
ment of sensory issues in childhood over to robotics and sensory aug-
mentation. The human brain and perceptual systems are self-organizing
entities that adapt in complex ways to the needs of the environment
throughout development (Stoianov & Zorzi, 2012; Van Orden, Holden,
& Turvey, 2003). Understanding how the system organizes itself to
implement sophisticated new algorithms – e.g. those approximating
Bayesian inference (Pouget et al., 2013) – provides the necessary the-
oretical backdrop to understand sensory issues in atypical populations
such as autism and schizophrenia, in which these computations may
operate differently (Montague, Dolan, Friston, & Dayan, 2012; Wang &
Krystal, 2014). Further, creating human-like adaptive capabilities in
robots also requires a thorough understanding of the course of human
development (Lake, Ullman, Tenenbaum, & Gershman, 2017). Finally,
knowing how children learn to integrate typical cues will help us un-
derstand how to help adults integrate augmented sensory devices into
their perceptual systems – a feat which adults don’t perform just by
exposure to a new device’s use (Goeke, Planera, Finger, & König, 2016).
To move towards answers that will help with these applications, we
tested two hypotheses about the course of emerging cue combination
skills in development, which make opposing predictions.

1.1. The Hard Limit at 10-11 hypothesis

This hypothesis states that children under 10 years old have a fun-
damental block, a relatively ‘hard’ limit, which prevents them from
combining cues across all of the different tasks given. This leads to a
relatively unified emergence of cue combination at 10–11 years old.
This is a relatively parsimonious explanation that still fits the vast
majority of the available data. To anchor this discussion, it is necessary
to look in some detail at a recent study of how visual depth cues, spe-
cifically binocular disparity and relative motion, develop in middle/late
childhood (Dekker et al., 2015). This study stands out as having a high
number of participants (N = 142), sampled continuously from a rela-
tively narrow age range (6–12 years), and with each participant com-
pleting an unusually high number of trials for a developmental sample
(360). Three measures of cue combination were obtained (two beha-
vioural and one from fMRI). All three were treated with a regression,
finding a divergence from no effect after the 10th birthday but before
the 11th. All three showed no significant cue combination effect in
children under 10.5 years old, but a very clear and significant effect in
children over 10.5 years old. This provides convergent, consistent evi-
dence that the combination of visual depth cues is present after 11 years
but not present before 10 years, at least under their task parameters.

This finding of a transition at about 10 years also converges with
other findings from studies that looked at the combination of different
cues. There is no finding of a bimodal precision advantage under
10 years in a wide variety of studies with different modalities and dif-
ferent types of judgements: self-motion and landmark cues to naviga-
tion (Nardini et al., 2008), visual and haptic cues to size and orientation
(Gori et al., 2008), disparity and texture cues to slant (Nardini et al.,
2010), visual and auditory cues to spatial and temporal bisection points
(Burr & Gori, 2012), visual and haptic cues to object size (Jovanovic &
Drewing, 2014), and finally visual and auditory cues to the number of
events (Adams, 2016). Some of these studies did not test children

shortly after the age of 10 years, but those that did found a transition
shortly after. For example, a partial integration model fit the majority of
participants at 10–11 years (Adams, 2016) and a bimodal precision
advantage was seen at 12 but not 10 years (Nardini et al., 2010).

The idea of a unified transition at about 10 years also fits with a
proposed theory of why cue combination would not be seen in young
children (Burr & Gori, 2012). It might actually present a subtle but
important advantage. This theory suggests that failing to combine cues
might make it easier to use cues for cross-calibration. In this context,
cross-calibration is defined as the elimination of relative biases. A re-
lative bias is when a given state of the world, cued in two different ways
at different times, leads to different average judgements of the world
state (e.g. a light and sound straight ahead are judged on average as 5
degrees left and 5 degrees right, respectively, which is a relative bias of
10 degrees). This theory also states that cross-calibration needs are
most intense during the first ten years of life when the eyes, ears, and
skull are developing the fastest. If these premises are true, then com-
bining cues from an early age might bar children from effectively
eliminating relative biases, leading to an extended period of disjointed
multimodal perception. In that sense, it could be advantageous for
children under 10 years to keep cues separate rather than combine
them.

Another reason to favour a unified transition account is the possi-
bility that the biological substrates implementing reliability-weighted
averaging are not capable of accurately carrying out these computa-
tions until near the start of puberty. These mechanisms are not yet well
understood, but one account proposes that they depend on the balance
of excitation and inhibition over relatively large populations of neurons
(Ohshiro, Angelaki, & DeAngelis, 2011). Their development is even less
well understood, but it is certainly possible that it is protracted during
the childhood years and into adolescence, like many aspects of cortical
organisation and function (Gogtay et al., 2004).

A recent study with adults also fits with this type of explanation
(Negen, Wen, Thaler, & Nardini, 2018). Adults were asked to learn new
depth cues – based either on sound delay or wrist vibration – and
combine these with a noisy visual cue. This means that participants had
a cue-specific experience that was child-like (i.e. low), but still enjoyed
the full neural maturation of adulthood. If the level of cue specific ex-
perience was more important, we would expect child-like performance
from them. Instead, participants learned to combine either new cue
with the noisy visual cue in just a few hours, emphasizing a strong role
for general neural maturation in predicting cue combination. This is
consistent with the idea that children might simply need to achieve the
neural changes involved in the first decade of life before they can
combine cues.

1.2. The Undiscovered task hypothesis

The alternative hypothesis is that children who are under 10 years old
actually can combine cues on the right task with the right parameters,
but this task has not yet been discovered yet. Under this view, children at
7–10 years old are fundamentally capable of combining cues in specific
circumstances that are designed to support this. This hypothesis does not
dispute previous results showing that there can be differences in per-
ceptual strategies between adults and children under 10 years old.
Instead, in short: at 7–9 years old, some tasks allow cue combination and
some do not. This would mean that development is less like a hard limit
at 10 years old and more like a gradient of earlier- and later-emerging
cue combination performance on different tasks. This hypothesis has not
yet seen any reliable support in the existing literature – by our count,
only one (Nardini et al., 2013) out of 26 tests for a bimodal precision
advantage below 10 years has been positive, a proportion not greater
than the expected Type I error rate. However, it remains the obvious
alternative to existing theory (Burr & Gori, 2012; Ernst, Rohde, & van
Dam, 2016). Our central approach is to see if a new task can provide
consistent evidence of cue combination in this age range.

J. Negen, et al. Cognition 193 (2019) 104014

2



1.3. The present study

The key evidence required to favour the Undiscovered Task
Hypothesis over the Hard Limit Hypothesis is a robust, repeatable
finding that children under 10 years old can combine cues, standing in
contrast to previous studies having shown combination only at
10 + years. To achieve this, we chose a new task with different para-
meters than those used in previous studies. Specifically, we chose to
focus on the parameter of feedback as way of making a new task, in
essence investigating how variations in feedback affect cue combination
behaviour. Feedback might help participants understand the relative
reliability of their perception of the two cues, which is the key to setting
the correct weights (Ernst et al., 2016), and poor weight choices in this
age range have been empirically demonstrated several times (Gori,
Sandini, & Burr, 2012; Nardini et al., 2010). Feedback might also help
reduce any relative biases. In adults, a strong relative bias prevents cue
combination, since it leads to the perception of two separate causes
(Shams & Beierholm, 2010). For example, it does not make sense to
average the perceived positions of a light and a sound source, creating a
unified estimate of their single cause, if a strong relative bias leads to
the inference that the cues are from different places. The Hard Limit
Hypothesis states that this should all be irrelevant and we still should
not see a bimodal precision advantage in children younger than
10 years. The Undiscovered Task Hypothesis allows for the possibility
that this effect will be found in this age range.

For Experiment 1a, we ran a variant of a previous spatial audio-visual
cue combination task with 7–10 year old children (Gori et al., 2012). The
previous study found a visual capture effect (only the visual information
was used) in their version without feedback. We altered Gori et al.’s
paradigm by giving feedback on single-cue trials (audio-only or visual-
only), but not the audio-visual trials, forcing participants to infer how to
combine the two cues only from their experience with each cue in iso-
lation (Maloney & Mamassian, 2009). To make the feedback more
meaningful, we also moved from a two-alternative forced-choice (2AFC)
bisection paradigm to an absolute judgement paradigm; feedback on
absolute judgements should, in principle, be more informative than
feedback on 2AFC judgements. In brief, our task asked participants to
judge the location of a target on a left–right horizontal axis in front of
them, relying either on a noisy visual cue, a spatialized sound, or both.
The target was ‘hiding’ behind an opaque wall and they used a computer
mouse to click where they thought it was on the horizontal axis. The key
analysis is whether judgements are more precise with both cues available
than the same participant’s best single cue. This is a result only expected
under cue combination (weighted averaging).

The results of Experiment 1a were very surprising, showing a bi-
modal precision advantage. Given the large number of studies on this

(reviewed above), almost all of which found null results in this age
range, we wanted to make sure the results were replicable (i.e. not
simply a Type I error due to a large number of independent tests across
many labs and studies). We therefore ran Experiment 1b, which was a
direct replication of Experiment 1a, finding the same pattern of results.

For Experiment 2, we wanted to look at this phenomenon with a
slightly different approach to see if we could find converging evidence.
We reasoned that if children at this age are combining cues in a task like
this, we should not only see a robust bimodal precision advantage, but a
model comparison analysis should also generally favour a cue combi-
nation model over any single-cue models as well. Experiment 2 also had
two secondary aims. The first was to see if there is an effect of feedback
that cannot be explained by simple task engagement. To achieve this,
we did not compare full-feedback and no-feedback conditions, as any
failures to combine cues in the latter could always be because they
simply find the task less engaging. Instead, we varied the type and
amount of feedback across conditions in a manner that did give some
feedback to all participants in order to keep motivation and engage-
ment high. The second was to see if children can adapt to varying levels
of visual reliability on a trial to trial basis. This is expected under the
full remit of Bayesian Decision Theory (Maloney & Mamassian, 2009),
but not under current models of multisensory learning in development
(Daee, Mirian, Ahmadabadi, Brenner, & Tenenbaum, 2014;
Weisswange, Rothkopf, Rodemann, & Triesch, 2011). Throughout ex-
periments 1a, 1b, and 2, our primary motivation was to see if children
at 7–10 years combine cues in our new task, which would discredit the
Hard Limit Hypothesis in favour of the Undiscovered Task Hypothesis.

2. Experiments 1a and 1b

In Experiment 1a, 7- to 10-year-old children were tested on their
visual and/or auditory localisation in the horizontal plane in an im-
mersive virtual reality (VR) environment. Their task was to find a tiny
virtual woman in a hot air balloon (‘Piccolina’) hiding behind a wall with
the aid of a brief visual cue, a spatialized sound, or both (Fig. 1). To show
where they perceived Piccolina to be, children used a virtual tool that
they controlled using a computer mouse. This allows us to analyse the
data with standard statistical tests to compare unimodal precision (audio
or visual alone) and bimodal precision (both available) (Ernst et al.,
2016). Based on the Hard Limit hypothesis, we would predict that their
precision with both cues available would be no better than the same
child’s precision with their best single cue. Based on the Undiscovered
Task hypothesis, we would predict that precision with both cues together
would be higher on average than with the best single cue. Since the re-
sults of Experiment 1a stood out in contrast to many previous similar
studies, Experiment 1b directly replicated Experiment 1a.

Fig. 1. Screenshots from the task. Panel A is from the Demonstration phase (described fully in Procedure), where participants were familiarized with the visual
stimulus. Panel B shows example feedback from the Data Collection phase where the participant has placed the response (red dot) about 75% of the way to the right
and the correct target (‘Piccolina’ in the hot air balloon) was very near, slightly further right. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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2.1. Method

2.1.1. Participants
77 participants were initially tested in total across Experiments 1a

and 1b. 33 of these were in Experiment 1a (18 males). Four of these
were excluded for failing to make estimates above chance in at least one
condition (ages 7, 8, 8, and 10; 1 male), leaving 29. An ability to use
each single cue (better than chance) was necessary to show that par-
ticipants understood the task, and for questions about potential cue
combination benefits to be meaningful. Of these 29, there were five 7-
year-olds, ten 8-year-olds, ten 9-year-olds, and four 10-year-olds. This
makes for a total of 25 included participants under 10 years old in
Experiment 1a. The other 44 participants were in Experiment 1b (22
males). Five of these were excluded for failing to make estimates above
chance in at least one condition (ages 8, 9, 9, 9, and 9; 4 males), leaving
39. Of these 39, there were four 7-year-olds, ten 8-year-olds, sixteen 9-
year-olds, and nine 10-year-olds. This makes for a total of 30 included
participants under 10 years old in Experiment 1b. This also means that
there were a total of 55 included participants under 10 years old in both
experiments together, plus an additional thirteen included 10-year-olds.

All children were enrolled in Primary Schools in County Durham,
UK. All children had normal or corrected-to-normal vision and hearing.
To the knowledge of the researchers, no children had been diagnosed
with any perceptual or developmental disorder that might have affected
task performance. This study was approved by the Psychology
Department Ethics Sub-Committee at Durham University (reference:
PGT2018MN1). Parents gave written informed consent.

2.1.2. Apparatus
Virtual Reality technology was used. Visual motion and positional

cues in virtual space are processed similarly to how they would be in
real space (Foreman, 2009), allowing for ecological validity whilst re-
taining a high level of experimental control. This study used WorldViz
Vizard 5 software and the Oculus Rift headset. AKG K 271 MK II
headphones were used with a SoundBlaster SB1240 sound card.

A simple virtual environment was created with four notable features
(Fig. 1). There was a large curved wall 2 m away from where the par-
ticipant sat. It had a gray fixation circle at its center. A red dot, when
shown, was under the participant’s control and used to indicate their
estimates. The target character (‘Piccolina’) was a 5 cm tall woman in a
15 cm tall multi-colored hot air balloon that could either jump excitedly
and clap her hands or lean over the side as if in tense anticipation of the
coming events. Participants were essentially trying to estimate where
Piccolina was hiding behind the top edge of the wall.

2.1.3. Stimuli
Visual stimuli consisted of an array of 64 spheres with a radius of

0.008 m, placed uniformly along the horizontal axis of the wall and
randomly along the vertical axis (Fig. 1A). During 250 ms, spheres
moved 1/7th of the way to the target location before disappearing. This
visual cue to location was designed to be uncertain, giving a potential
advantage for participants to combine the visual cue with the auditory
cue when both were available. Judging the point of convergence can be
described as a motion integration or coherent motion task (Burr &
Thompson, 2011).

The audio stimuli consisted of white noise amplitude modulated at
10 Hz. This lasted for 300 ms. Audio stimuli were spatialized using the
‘small pinnae’ head-related transfer function from the CIPIC head-re-
lated transfer function (HRTF) database (Algazi, Duda, Thompson, &
Avendano, 2001) for 117 different points along the wall. For these
experiments, audio and visual stimuli were both accurate and aligned
(i.e. no perturbations were shown). All variation in results thus re-
flected internal noise and biases.

Audio-spatial stimuli typically show measurable biases, even when
using a speaker array and gathering data with adults (Lewald &
Ehrenstein, 1998). Because HRTFs were not those of individual

participants, we might find auditory localisation to have larger biases
than with a speaker array or individually-tailored HRTFs. However,
because the experiment included feedback (see below), participants
also had an opportunity to recalibrate for such biases. In our analysis,
we checked for biases as well as precision.

2.1.4. Procedure
Children were told that they would play a virtual game of hide-and-

seek. The headset and headphones were adjusted to be comfortable and
ensure clear perception.

Participants were introduced to Piccolina, an animated character
who would later hide from view. The researchers checked participants
could see the entire virtual wall, which Piccolina would hide behind. At
this point, the procedure went in three phases: Demonstration,
Warmup, and Data Collection (Fig. 2).

2.1.4.1. Demonstration. A gray circle was present in the center of the
screen, and a small white dot indicated the central visual point of the
headset, demonstrating participants’ fixation (see Fig. 1B). Participants
were told they could control the white dot by moving their head, and
instructed to keep it within the gray circle. If participants moved their
heads during the experiment, the task would pause until the white dot
was back in the gray circle. This ensured that the visual field remained
the same between participants and trials.

Volume was tested. Then children were told they would see dots
moving towards Piccolina, as if she held a large magnet. This was de-
monstrated on-screen, with visual stimuli moving from both directions
towards Piccolina, centred on the white wall. The first demonstration of
the visual cue was extended, allowing participants to clearly see the
dots move all the way to Piccolina. Participants were then told that this
was ‘a little bit easy’, and that they would see something a bit shorter.
Children were then exposed to a second visual demonstration, showing
the dots as they would appear during the task. Children were shown
both demonstrations again to consolidate how the cue could be used.
Piccolina then moved around the wall, moving in steps towards the far
right, then far left, and back to the center-point (32 exposures). At each
step, the visual stimuli were demonstrated moving towards her loca-
tion. Children were instructed that this was how the dots would appear
during the task, and could be used as a clue to identify her location.
Piccolina then moved around the wall again, and this time children
were exposed to the audio stimuli at each of the same 32 positions in
the same order. Children were instructed that the sound ‘following
Piccolina’ could also be used as a clue to identify her location.

2.1.4.2. Warmup. Piccolina then hid from view behind the top of the
wall, and a single-cue trial was given (see Fig. 2-B). Children controlled
a red dot using a computer mouse to report their location estimate, and
a mouse-click to make their judgement. This continued for 30 trials
trials, 15 visual-only and 15 audio-only, evenly spaced across the
response area. Feedback was given on all of these trials. These data are
not used in the analysis.

2.1.4.3. Data Collection. There were 70 evenly-spaced targets for this
phase. Each target location was tested once with just an audio stimulus,
once with just a visual stimulus, and once with both. Fig. 2-B gives the
timing of each trial. The trial types were interleaved. Trial 31 was
audio-only, 32 was visual-only, 33 was audio-visual, 34 was audio-only,
and so on. The order of targets was randomized. Feedback was only
given on trials where one cue or the other was presented (not both).

2.1.5. Constant and variable error calculations
The data were processed into constant and variable error for each

participant. Cue combination is not always expected to affect constant
error, but is always expected to reduce variable error (Ernst et al.,
2016). To calculate these, we first need the residuals. The residuals are
the response locations subtracted from the target locations (e.g. if the
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target is at +25 degrees and the response at +20 degrees, then the
residual is −5 degrees). The constant error is the average residual. The
variable error is the variance of the residuals. This variable error re-
presents the remaining noise after parsing away the constant error
(bias), with a lower variable error corresponding to higher precision
(better).

2.2. Results and discussion

Results consistently pointed towards a bimodal precision advantage
and thus to cue combination. We focused first on the children under
10 years old. The main outcome measure was the variable error (VE).
These VE measures were heavily skewed in many cases, such as a
skewness of 2.21 for the audio-visual VE measures, so they were ex-
amined with a sign-rank analysis. (This also allows us not to be con-
cerned with potential differences when using standard deviation, var-
iance, or precision; they all give the same rank differences.)

The outcomes of these analyses are reported in Table 1, while the
data are shown in Fig. 3. The analyses found significant within-subjects
differences between VE with bimodal audio-visual cues and each par-
ticipant’s best single cue in Experiment 1a (Table 1). The bimodal trials
showed lower VE (average 78% of best single cue), pointing towards
the presence of a bimodal precision advantage. This finding is generally
considered to be the most crucial and strongest evidence of cue com-
bination (Ernst et al., 2016) as it demonstrates that the additional (less
precise) cue is being used in some way to improve the precision of
estimates. Further, we did not find a difference between the audio-vi-
sual performance and the prediction of optimal performance (Table 1).

The optimal prediction is found by adding the precision from the two
cues together (Ernst & Banks, 2002). This means that participants not
only showed a bimodal precision effect, but that they further showed an
effect that we cannot differentiate from the optimal use of the two cues
together.

Experiment 1b was performed to see if these findings would re-
plicate. They did (Table 1). There was a significantly lower VE for the
bimodal trials compared to the same participant’s best single cue (on
average, 73%). There was no difference between the audio-visual per-
formance and the predicted optimal performance. This suggests that
these findings are reliable and replicable.

For further analysis by age group, the data from the two experi-
ments were pooled together for a larger sample. Each year-long age
group showed a significant bimodal precision advantage in terms of VE

Table 1
Outcome measures for Experiments 1a and 1b (sign rank tests). BS = Best
Single; AV = Audio-Visual; O = Optimal.

Group Comparison Direction p N Median Diff.

1a: < 10 YO Best Single BS > AV 0.005 25 34.0
1a: < 10 YO Optimal O = AV 0.979 25 −2.90

1b: < 10 YO Best Single BS > AV < 0.001 30 35.4
1b: < 10 YO Optimal O = AV 0.909 30 −0.01

1: 7 < Age < 8 Best Single BS > AV 0.027 9 38.9
1: 8 < Age < 9 Best Single BS > AV 0.006 20 42.0
1: 9 < Age < 10 Best Single BS > AV 0.003 26 28.6
1: 10 < Age Best Single BS > AV 0.017 13 24.5

Fig. 2. Order (A) and timing (B) of the trials. For the data collection trials, after fixating for 250 ms, participants would receive a stimulus that contained audio spatial
information, visual spatial information (64 dots moving briefly to a common location), or both. They would then make a response. If there was only one cue presented
(audio or visual), they would then receive feedback, which remained visible until they pressed a button to begin the next trial.

J. Negen, et al. Cognition 193 (2019) 104014

5



(Table 1, Fig. 3). On average, the bimodal VE was 82%, 74%, 73% and
76% of the best single cue VE, for each age group in order. This ratio
was not significantly correlated with age, r(66) = -0.13, p = .288.

The bimodal precision advantage was also present and significant
when looking at all data collected with children under 10 years old (see
Fig. 3), including the 8 children that were excluded, N = 63, p < .001.
(One more child was also excluded, but that child was over 10 years
old.) This shows that this effect does not depend on our exclusion cri-
teria.

Biases were centered near zero (see Fig. 4) and audio-only biases
were comparable in magnitude with previous reports of typical adult
biases for audio-spatial stimuli (Lewald & Ehrenstein, 1998). This
suggests that our use of HRTFs through headphones was not a major
issue. Further, using the VEs, we can estimate the weight that would be
optimal to give to each cue during audio-visual trials (weighted by
precision, which is 1/VE, as measured in single-cue trials). We can then
predict, for each participant, the bias in the audio-visual trials if the two
cues are being averaged with the optimal weights. The predicted and
observed biases in the audio-visual trials were significantly correlated

(Fig. 4, right), r(53) = 0.56, p < .001. This is also consistent with cue
combination.

To further deal with biases, we also looked at the mean squared
error (MSE). This measure includes the bias, creating an overall mea-
sure of accuracy, which may be of more practical interest. It was cal-
culated by squaring and then averaging the signed errors. (In contrast,
the VE subtracts out the mean signed error.) This bimodal MSE was, on
average, 90% and 88% of the best single cue MSE for each respective
experiment. This also reached significance in Experiment 1a, p = .019,
and Experiment 1b, p = .006, in a sign-rank test between the best single
cue trials and the audio-visual trials. This suggests that participants not
only increased precision, but also accuracy, with both cues available.

To see how this pattern of performance was reflected in the raw
data, we show the full target and response distribution of a selected
sample participant with lower audio-visual VE than either single cue VE
in Fig. 5. Full data are also attached in Supplemental Materials for any
further analysis desired by future researchers (Negen et al., 2019).
Comparison with the identity line shows that bias is relatively minor
(especially in the center of the range). The lower variability along the y
axis in Audio-Visual than either single cue condition marks the bimodal
precision advantage.

In summary, the results of both Experiment 1a and 1b suggests that
children under 10 years old can combine cues in this task, perhaps even
optimally. This is robust to a wide variety of ways of looking at the data
as well – various outcome measures, experiments, and subgroups of the
age range. This violates the predictions of the Hard Limit hypothesis
and instead matches the predictions of the Undiscovered Task hy-
pothesis.

While results from Experiments 1a and 1b already point towards
favouring one of the two key hypotheses, matching the standard of
evidence set by a previous project (Dekker et al., 2015) requires the
effect to be shown independently a third time in a different kind of
measure. We chose a model comparison measure as the strongest way
of verifying this. If children under 10 years are combining cues, they
should not only show a bimodal precision advantage, but a combination
model of their data should be preferred over a model that posits the use
of a single cue on each trial. Experiment 2 fills this role.

Fig. 3. Comparing the standard deviation of responses away from the targets with the best single cue (X axis) versus the two cues together (Y axis). The reference line
in blue is where they are equal. Data points represent individual children. Points below the line indicate a bimodal precision advantage. Points nearer the left
represent a better use of at least one cue. The left panel shows all children tested, with the right panels breaking this apart by age. Red crosses denote data from
children excluded from analysis for failing to make estimates above chance in at least one condition (see Section 2.1.1. Participants). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Biases in the task. On the left, a box and whisker plot of observed biases
in the included children under ten years of age. Notches represent a 95%
confidence interval on the median. The red line is the median. The box spans
from the 25th to 75th percentile. The whiskers extend two 1.5x the interquartile
range or the furthest data point there. The red crosses are further data outside
the whisker range. On the right, the bias in the audio-visual trials was sig-
nificantly predicted by the optimal combination of the two cues. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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3. Experiment 2

Here, we prioritized the ability to carry out model comparison with
each individual child’s dataset separately. In this case, we are not pri-
marily testing for a bimodal precision advantage with a null hypothesis
of no difference and a vague alternative of some difference (though this
effect was also observed). Instead, we created several generative models
of the algorithm used to deal with the two sources of information, de-
rived predictions of the bimodal trials from performance on the single-
cue trials for each child and each model, and compared how well these
predict the actual bimodal data for each child.

This means that we are looking at the best model for each child, not
the entire group. This is a challenge with children at this age because
they are unlikely to be willing and able to focus on the task for long
hours or thousands of trials. Instead of raw trial numbers, we therefore
used a visual stimulus with external noise. This means that the visual
stimulus was extremely easy to perceive. It was clear exactly where its
center was on the horizontal line. It was left visible until the participant
made their response. The noise was manipulated in the way the center
of the visual stimulus related to the placement of the target. Under the
control of the experimenter, the target would tend to appear near the
center of the visual stimulus but could vary in either direction along the
horizontal line. This is external noise in the sense that the noise is ap-
plied to the stimulus by the experimenter (Macmillan & Creelman,
2004). Internal noise is when the stimulus could be used perfectly in
principle but performance is limited by noise intrinsic to the partici-
pant. The use of external noise increases statistical power since we can
use the known placement of the visual cue to create narrower predic-
tions for all of the models that involve the visual cue.

We also wanted to look more at the role played by feedback. We did
not want to have a condition without feedback as this may simply not
be as motivating. However, we could instead manipulate if they re-
ceived feedback on single-cue trials (like Experiments 1a-b), the audio-
visual trials, or both. Feedback on the audio-visual trials might be more
helpful than single-cue trials because it makes it the most obvious when
cue combination would have led to a more accurate response, and could
potentially train a cue combination strategy. On the other hand, feed-
back on single-cue trials was already very effective in Experiments 1a
and 1b. It is also possible that learning relative to both cues at the same
time is difficult for young participants. In any case, an effect where
differences in feedback lead to different rates of cue combination be-
haviour would support the general idea that feedback is an important
variable for predicting the combination of cues.

Further, we wanted to see if participants could stretch beyond the
predictions shown by the experiment above. The full remit of Bayesian
Decision Theory predicts not just a precision advantage for combination
of cues, but also that this should persist when the relative reliability of
the two cues changes – even trial to trial. To test this, we allowed the
precision of the visual cue to vary randomly within a range around the
running estimate of the audio cue’s reliability for each participant. This

also helps ensure that the reliabilities will tend to be reasonably mat-
ched for most trials, which is also important for statistical power (Ernst
et al., 2016).

3.1. Method

3.1.1. Participants
Eighty-three participants were tested, some in the lab (N = 22) and

the rest in a local school. Of these, 16 were excluded for failing to show
a significant correlation between targets and responses in the audio-
only, visual-only, or audio-visual trials, leaving 67 participants. Ages
ranged from 7 years and 0 months to 9 years and 11 months (17, 27,
and 23 respectively in each year range). The ages were distributed
evenly among the three conditions, with each having an average par-
ticipant age of 8 years and 4 months. This study was also approved by
the Psychology Department Ethics Sub-Committee at Durham
University (reference: 16–07 Multisensory Learning). Parents gave
written informed consent.

3.1.2. Apparatus and stimuli
The apparatus was the same for participants tested in the lab and in

schools in terms of display equipment, headphones, and environment,
but in the lab setting we gave them a virtual laser pointer as a response
device instead of a mouse. In both cases, the audio stimulus was the
same as Experiments 1a and 1b. The virtual environment was also the
same as the previous experiments, except for the visual stimulus.

The visual stimulus was a display of a normal distribution placed
over the wall (see Fig. 6). The targets were generated by actually
drawing from this distribution and re-drawing if this fell off the ends of
the wall. This means that the visual cue went from having internal noise
to external noise for this experiment. The placement of the visual cue’s
center varied randomly (uniformly) across the wall. Further, crucially,
the variance of the visual cue varied trial-to-trial from 75% to 125% of
the running estimate of their audio variance. This was signalled by
drawing the visual cue wider or narrower on each trial. In essence, this
asked participants to look at the blue curve and extract both a mean and
a variance. This challenged participants to not only combine the cues,
but to do so with varying weights across the experimental session.

3.1.3. Procedure
Procedure for this experiment was very similar to Experiment 1a

and 1b but had two notable differences. First, the feedback varied by
condition between subjects: all trials (feedback on audio, visual, and
audio-visual), single-cue only trials (feedback on audio, visual), or
audio-visual trials. To make the feedback amount similar in the single-
cue feedback condition and the audio-visual feedback condition, the
participants in the audio-visual feedback condition experienced twice
the number of audio-visual trials (rotating audio, audio-visual, visual,
audio-visual).

Second, the demonstrations were altered. The audio demonstration

Fig. 5. Full data from a selected representative participant. The AV trials tended to be closer to the target (i.e. fall closer to a line from the bottom left to top right),
whereas the response to each single cue were less precise. Points represent individual trials.
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was shortened to 16 trials. The visual demonstration was altered to be
three stages of 16 draws each. The first draw was from a central,
medium-variance visual cue. The second was from a leftwards large-
variance visual cue. The third was from a rightwards low-variance vi-
sual cue. This was intended to introduce the idea that the reliability of
the visual cue could change and that the highest point on the visual cue
indicated the most likely target.

3.1.4. Models and model comparison
We considered six different models as potential candidates for ex-

plaining how each child behaved in the audio-visual trials. Each
model’s mathematical implementation was derived as much as possible
from the existing literature. In non-technical terms, we used each
child’s data in visual-only and audio-only trials to calibrate what to
expect across the different models. For example, the audio-only model
treats audio-visual trials as if they were also just audio-only trials (i.e.
the child just ignores the visual stimulus). To see what we expect to
happen on those audio-visual trials, if that model is correct, we use the
data from trials that were actually audio-only. We essentially expect
those two conditions to look similar in terms of bias and noise. The
other models have different strategies for the audio-visual trials,
leading to different predictions. The process as a whole is designed to
find the model that is best at using the single-cue trials to predict what
will happen in the audio-visual trials. We describe this process in the
proper technical terms in Section 3.1.4.7, but first give a description of
the various models.

At a mathematical level, each model is essentially a way of taking in
certain parameters and then predicting a distribution of responses on
each audio-visual trial. The top of Fig. 7 gives some example parameter
settings. Each panel of Fig. 7 shows what a different model would
predict for the distribution of responses for an audio-visual trial. The
following six subsections explain each model individually. In each
subsection, the top paragraph explains the concept of the model and the
bottom paragraph describes the calculations involved.

3.1.4.1. Optimal combination. In this model, the auditory and visual
estimates are weighted by their relative reliability and averaged. This
represents the best possible use of the two cues for maximising
precision around the correct target over a large number of trials
(Ernst & Banks, 2002). Note that under this model, the weights
change trial-to-trial based on the varying reliability, i.e. varying
external noise, of the visual cue (c.f. single weighting below).

In the example (Fig. 7), the visual cue is more reliable than the
audio cue. This leads to most responses being closer to the visual cue
than the audio cue. Using standard deviations of 10 and 15 degrees (for

visual and audio respectively), we calculate a visual weight of 10−2/
(10−2 + 15−2) = 0.69. We predict that the most likely response will be
a weighted average of their placements (5 and 20 degrees):
5 * 0.69 + 20 * (1–0.69) = 9.6 degrees. However, there is some var-
iance left. We know exactly where the visual cue was placed, but we do
not know exactly where the participant will perceive the audio cue.
Therefore, the prediction for their weighted average still has a standard
deviation of (1–0.69) * 15 = 4.6 degrees.

3.1.4.2. Biased weight. This is much like optimal combination, except
the weights can be systematically biased. Depending on the parameter
setting, it can either under-weight or over-weight the visual cue. One
way to think of it is as follows: this model has a difference between the
visual cue’s actual reliability and its perceived reliability. The actual
reliability is multiplied by a certain number to get the perceived
reliability, then the perceived reliability is used to find the weights. If
that multiplicative factor is above one, both cues are still used but the
visual cue is given too much weight. Just like the optimal model, the
weights change trial-to-trial with the changing visual reliability (i.e.
varying external visual noise).

In the example, the visual cue is more reliable than the audio cue
and there is an additional bias towards the visual cue. Specifically, in
the example, we have chosen to illustrate what happens when the
perceived precision of the visual cue is E = 1.5 times higher than its
actual precision. We do the same calculations as the optimal model, but

Fig. 6. Screenshot of the visual stimulus and the alternative response device
used for in-lab testing. The blue curve on top of the wall is a normal distribution
with a certain mean and a certain variance that changes trial to trial. The target
is most likely to appear directly under its center, becoming less likely to the left
and the right, exactly in proportion with the depicted height of the blue curve.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. An example of each model predicting audio-visual data by using the
parameters at the top. The curves are probability density functions. Their height
at any given point gives the probability of recording a response there, given
these specific parameters. The most crucial feature is that the optimal, biased
weight, and fixed weight models use both cues on every trial. This allows us to
predict responses that mostly fall in between the two cues. The audio-only,
visual-only, and switching models use only one cue on any given trial. This
leads to distributions that are not particularly concentrated in between the two
cues. The text in 3.1.4.1 through 3.1.4.6 give further details on each model. See
Table 2 for the equations used to find the mean and standard deviations for the
displays here.

J. Negen, et al. Cognition 193 (2019) 104014

8



use a value of 10−2 * 1.5 for the visual cue’s precision instead of 10−2.
This leads to a 0.81 visual weight. The most likely response is at 7.7
degrees, which is closer to the visual cue than the optimal model. Since
the audio cue is less involved, the prediction has a lower standard de-
viation at 15 * 0.19 = 2.7 degrees. If we instead set E to some value
below one, like E = 0.5, then the prediction would instead over-weight
the audio cue and become wider.

3.1.4.3. Fixed weight. This is also a form of combination model, but it is
unresponsive to the relative precision of the two cues. A single fixed
weight for the visual cue is set between zero and one and applied for all
trials.

In the example, we have chosen to illustrate what happens when
WV = 0.5, i.e. when the visual weight is 50%. This is lower than the
optimal (69%). This means that more of the responses tend to be further
from the visual cue and closer to the audio cue. The most common
response is 50% of the way between the two cues at
5 * 0.5 + 20 * 0.5 = 12.25 degrees. The audio cue is more involved
than in the optimal, so the prediction has a larger standard deviation at
15 * 0.5 = 7.5 degrees.

3.1.4.4. Audio only. The participant just uses the audio cue. This is
essentially just modelling the audio-visual trials as if they were
additional audio-only trials.

In the example, the audio cue is placed at 20 degrees. Since there is
no bias, we expect the most likely response to be at 20 degrees. This
happens to be far from the visual cue. However, there is also a 15 de-
gree standard deviation in audio perception. The prediction distribution
therefore also has a standard deviation of 15 degrees, much higher than
the optimal (4.6 degrees).

3.1.4.5. Visual only. The participant just uses the visual cue. This is
essentially just modelling the audio-visual trials as if they were
additional visual-only trials.

In the example, the visual cue is placed at 5 degrees. There is no
bias, so we expect the most likely response to be at 5 degrees. This
happens to be far from the audio cue. The standard deviation of re-
sponses is the standard deviation of the stimulus itself times a factor F.
In our notation, SDVResp = SDVStim * F. In the example, we have chosen
to illustrate what happens when F = 0.2. We expect the standard de-
viation of responses to be 10 * 0.2 = 2 degrees since the visual cue has a
standard deviation of 10. For our purposes here, it does not matter
exactly why this noise exists (i.e. why they did not point exactly to the
center of the visual cue). It could be some combination of motor error, a
sampling or pseudo-sampling strategy, an effect of where the last vi-
sual-only target appeared, and so on. The important thing is that we
model the audio-visual trials here as if they were visual-only trials,
including the unclassified noise that was present in the actual visual-
only trials.

3.1.4.6. Switching. The participant has a probability of choosing either
the visual cue or the audio cue and just using it alone on each trial. They
never use both cues on any single trial, but they do switch between the
two single cues on separate trials over the course of the experiment.

This is just a mixture of the audio-only and the visual-only models.
In the example, we have chosen to illustrate what happens when
CV = 50%, i.e. the prediction is found by taking half of the height of the
audio-only prediction and adding it to half of the height of the visual-
only prediction. Given the parameters, the most likely response is at 5
degrees, centered over the visual cue. However, there is a second local
mode over the audio cue. If we instead set CV to 75%, we would take
75% of the height of the visual-only prediction and add it to 25% of the
height of the audio-only prediction.

3.1.4.7. Overview of the model comparison algorithm. The model
comparison procedure went through a series of steps for each

individual participant. The end result was a single selected model
that performs best in terms of predicting each participant’s audio-visual
data from their audio-only data and their visual-only data. This was
approached by Bayesian Markov Chain Monte Carlo. For an explanation
of the theory behind this, see (Kass & Raftery, 1995), especially Section
4.2 (“Simple Monte Carlo”, the exact method used here). In their
notation, we need to integrate pr(D|θ)π(θ)dθ for each model. D is the
audio-visual data, θ are the parameters that the models use, and π is
either the distribution derived from the single-cue data or a prior
distribution. We do this by sampling θ(i) from π(θ) and averaging pr
(D|θ(i)). This happens in four steps.

First, audio-only parameters were sampled using the audio-only
data. This was done in the style of a linear regression. Each response
was modelled as a draw from a truncated normal. Truncations were
placed at +45 and −45 degrees since the participant was not allowed
to respond outside this range. There was a slope parameter SA, a bias
parameter BA, and a standard deviation SDA. The mean was the audio
stimulus’s position times the slope, plus the bias. Samples were taken
from the posterior distribution via slice sampling with flat priors. The
samples tended to be near the best fit, but also varied somewhat around
the best fit, reflecting the uncertainty in their exact correct values. For a
tutorial that explains posterior distributions and this type of sampling
method, please see (Lee & Wagenmakers, 2013).

Second, the visual-only parameters were sampled using the visual-
only data. The approach was the same as for the audio-only parameters
in terms of slope and bias. The standard deviation of responses, SDVResp,

was modelled as proportional to the standard deviation of the visual
stimulus, SDVStim: SDVResp = F * SDVStim. This was done because re-
sponses varied further from the center of the visual cue when it was
wider.

At this point, all fitting of the data has been concluded and was
based solely on audio-only and visual-only data. The audio-visual data
have not yet been used.

Third, any additional parameters were drawn from their prior dis-
tributions. This specific step is completely independent from all of the
data. The parameters were a bias in the weights for the biased weight
model (E), the weight for the single-weight model (WV), and the rate of
choosing the visual cue for the switching model (CV). Each of these is a
single parameter for all of the audio-visual data for a single participant
(not a copy for each trial). In the notation of Kass and Raftery (1995),
all nine parameters sampled so far are a single vector θ(i) consisting of
SA, SV, BA, BV, SDA, F, E, WV, and CV. We next calculate pr(D|θ(i)) for
each model.

Fourth, all sampled parameters are fed into each model so that we
can see how well they predict the audio-visual data. Specifically, we are
looking for the highest joint probability of the actual responses in
audio-visual trials. In all cases except switching, the audio-visual data
are modelled as drawn from a truncated normal. Table 2 shows how the
different models use the different parts of θ(i) to predict the mean (MAV)
and standard deviation (SDAV) of the responses. The joint probability is
found by multiplying all the probabilities of the individual responses.
Each individual probability is the density of the truncated normal pdf
evaluated at the response for a given trial. In Fig. 7, this means finding
the response on the x-axis and then finding the height of the curve at
that location. For the switching model, we instead average together the
individual probabilities from the audio-only and visual-only models.
Specifically, CV ∼ Uniform(0,1), CA = 1-CV, and PrAV = PrV * CV +
PrA * CA. Here, PrV is the probability assigned to each response by the
visual-only model and PrA is for audio.

These first four steps were repeated 30,000 times and the first 5000
were discarded as burn-in. That was repeated independently in four
chains, resulting in 600,000 joint probabilities (100,000 per model).
These joint probabilities were averaged so that each model had one
grand probability of the audio-visual data. The model that assigned the
highest grand probability to the audio-visual data was selected. This
was the preferred model in the Bayesian sense: integrating over its
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uncertainty, informed by the audio-only and visual-only data, it has
predicted the audio-visual data better than the other models.

3.2. Results and discussion

For 34 participants (out of 67), the best fitting model had a pairwise
Bayes factor of at least 10 times above the second-best model. Fig. 8
gives the counts of the best fitting models by feedback condition.
Overall, results suggest that the majority of participants were com-
bining cues (in total 65% of children combined) either optimally (33%)
or with biased weights (30%), and with one child best fitted by the fixed
weight model. Strategies relying on one cue on each trial (i.e. no
combination) were rarer, with 19% switching between trials and 16%
just using the visual cue. While this highlights heterogeneity in this age
range, it still speaks strongly to the idea that cue combination in this
task can be done by children under 10 years.

To test the effect of conditions with a chi-square, the counts of the
three combination models (optimal, biased, fixed) were collapsed, as
were the counts of the single-cue use models (switching, visual-only,

audio-only), because many individual cells had zero data points within
them. A significant association between feedback condition and model
category was found, N = 67, X2(2) = 10.38, p = 0.006, suggesting that
the different levels of feedback led to different rates of cue combination.
The condition with the most models in the combination category was
the single-cue feedback condition (88% combining optimally or sub-
optimally). This was lower in the conditions with feedback on all trials
(64%), followed by feedback only on audio-visual trials (41%). This is
still consistent with the hypothesis that this age range is capable of
combining cues in this variation of the task. However, it does suggest
that feedback on single-cue trials is generally more helpful in aiding cue
combination than feedback on dual-cue trials. This difference empha-
sizes a role for the feedback in predicting cue combination.

Another notable finding is that we found only one child best fit by
the fixed weight model and none best fit by the audio-only model. This
might indicate that for children at this age, the major issue is not (a)
being incapable of having their responses change based on changing
relative reliability or (b) allowing audio capture for a spatial judge-
ment. Instead, the major issues seem to be (1) learning the correct
weights for the two cues, (2) deciding to integrate them both rather
than switch back and forth between, and (3) using an audio cue at all
for a spatial judgement – in a sense, the most extreme example of in-
correct weights. In addition, the preference for the visual-only model
over the audio-only model converges with a previous project (Gori
et al., 2012), so we now have consistent evidence that visual capture is
a major issue for spatial judgements with audio-visual cues in devel-
opment.

We also did two things to make sure that the models were working
as intended. First, we generated 100 datasets of 210 trials from each
model and ran them through the comparison. These simulations used a
gamma distribution of noise levels in each cue that was similar to the
actual child data. We found that the method recovered the generating
model on 96.8% of datasets. This confirms that the models are differ-
entiable and that the analysis method is a reliable way to identify the
correct model among these. Second, we reasoned that there should be a
bimodal precision advantage as seen in the previous experiments 1a
and 1b if the model fits are correct. We found indeed that there was,
with the bimodal trials showing lower variable error than the best
single cue trials in a sign-rank test, N = 67, p < .001.

4. General discussion

All three experiments provided results converging on cue combi-
nation in this task in children over 7 years and under 10 years old. This
can be interpreted alongside another report about the combination of
motion and disparity cues to depth (Dekker et al., 2015). That study
provided three independent analyses that converged on children in this
same age range failing to combine cues, but instead doing so over the
age of 10.5 years. This further sits within a larger literature where there
have been 25 separate failures to find a bimodal precision advantage
under the age of 10 years old. Taken together, our current data and
previous results provide convergent evidence that cue combination
emerges at different time points for different tasks. As a whole, this is
compelling evidence against the idea that cue combination emerges in a
unified fashion in development, instead strongly suggesting that chil-
dren under 10 years old can combine cues – they just need the right
task.

The model comparison results in Experiment 2 also clarify which of
the proposed alternative strategies are most likely to fit performance
when it is not best fit by optimal cue combination. The most common
alternative is combination with the incorrect weights. We also saw
many participants discarding the audio cue entirely, converging with a
previous report where children in the same age range showed a similar
effect (Gori et al., 2012). This suggests that it remains tempting through
middle childhood to over-rely on vision for spatial judgements, some-
times even to an extreme where audition has no effect at all.

Table 2
Reference for model parameters.

Model Mean Standard deviation

Optimal WV = PVStim/(PA + PVStim)
WA = 1 − WV

MA = A * SA + BA

MV = V * SV + BV

MAV = WA * MA + WV * MV

SDAV = WA * SDA

Biased E ∼ Gamma(2,1)
WV = PVStim * E/(PA + PVStim * E)
WA, MA, MV, MAV same as optimal

SDAV = WA * SDA

Single WV ∼ Beta(2,2)
WA, MA, MV, MAV same as optimal

SDAV = WA * SDA

Visual MAV = V * SV + BV SDAV = SDVResp = F * SDVStim

Audio MAV = A * SA + BA SDAV = SDA

Note. PA refers to the precision of responses with the audio-only trials. Precision
is 1/variance. PVStim is the precision of the visual stimulus. A is the placement of
the audio cue. V is the visual cue’s center. SA is the slope during audio-only
trials. BA is the bias during audio-only trials. SV and BV are the same but for
visual-only trials. SDVResp is the standard deviation of responses around the
center of the visual stimuli on visual-only trials. In the end, each response is
assigned a probability based on the truncated normal distribution with a mean
of MAV, a standard deviation of SDAV, and truncations at −45 and +45 degrees.
The joint probability is the product over all audio-visual trials completed by the
participant.

Fig. 8. The count of participants best fit by each model in each condition.
Participants in the All (blue) condition received feedback on all trials.
Participants in Single (orange) received feedback only on single-cue trials.
Participants in Two (grey) received feedback only on trials with both cues. The
majority of children were best fit by a combination model (65%), especially in
the single-cue feedback condition (88%). Biased weighting of the two cues was
a very common non-optimal strategy, as were switching and relying solely on
the visual cue. However, few children failed to respond trial-to-trial to the
varying cue weights (fixed weight) or used the audio cue exclusively. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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We also found further evidence for an effect of feedback on cue
combination behaviour in Experiment 2, but not the simple one that
might be expected. The simplest story to tell is that children between 7
and 10 years combine cues with feedback, like our Experiments 1a-b,
but do not combine cues without feedback, like a previous audio-visual
study in the same age range (Gori et al., 2012) which found strong
visual capture. But as our Experiment 2 shows, the full results are more
nuanced: some appreciable level of cue combination behaviour was
seen in all three feedback conditions, but the condition with single-cue
only feedback showed the highest rate (88%) and the condition with
dual-cue only feedback showed the lowest (41%). This suggests instead
that single-cue feedback effectively promotes cue combination beha-
viour, changing the rate of cue combination observed, but not acting
strictly as a binary switch.

Finally, only one child was best fit by a model with fixed weights in
Experiment 2. Under this model, children do not adapt on a trial-by-
trial basis to the varying reliability of the visual stimulus. They instead
set one weight for the visual information and apply it regardless of the
varying reliability. The result that this model was rarely selected in-
dicates that children, once they are no longer selecting cues, quickly
come to understand that the weights given to each modality must vary
based on the nature of the stimulus presented (Maloney & Mamassian,
2009).

The primary finding is a key guide to the development of future
theory. At the moment, papers that model the acquisition of cue com-
bination tend to discuss emergence as a unified whole (Daee et al.,
2014; Weisswange et al., 2011). Current models also do not (at least
explicitly) differentiate various tasks in ways that predict their different
courses of emergence. Future models should take on this challenge and
attempt to understand why the same computations might emerge at
different developmental points in different tasks. Further understanding
of the order of emergence will let us see the crucial contours of what
makes an ‘easy’ or ‘hard’ learning problem, thus gaining insight into the
learning process.

4.1. Favoured explanations

This finding opens up a new theoretical depth in our understanding.
With this result in hand, it is now sensible to ask what exactly makes
this task different from the large body of attempts to find a similar
bimodal precision advantage in this age range. In this section, we
present and critically evaluate the two explanations that seem most
likely to us. In the section after, we argue why some competing ex-
planations are less compelling.

4.1.1. Feedback adjusting perceived relative reliability
Under this hypothesis, participants come into any given cue com-

bination task in the 7–10 year old range equipped with the (optimal)
reliability-weighted-averaging algorithm. However, they lack correct
estimates of the relative reliability of the two cues. Without this, they
default to a switching strategy, default to a cue selection strategy, or
combine the cues with incorrect weights. No bimodal precision ad-
vantage obtains. In contrast, in our experiments, the feedback allows
them to estimate the correct weights with reasonable accuracy and then
create a bimodal precision advantage through cue combination.

The question then is why natural experience would not give chil-
dren under 10 years good estimates of relative reliability. Here we think
there is at least one plausible answer. The problem of estimating the
reliability of a wide variety of audio and visual stimuli, in terms of their
localization, may be too overwhelming for various reasons. It might
place memory demands that are too high or require them to develop a
fuller internal model of their own perception than they currently have.
The present task, in contrast, requires them only to derive an estimate
of the reliability of the subset of audio and visual cues that we pre-
sented. It seems plausible that this smaller problem is tractable but the
larger issue of a good general model of own uncertainty is not.

This explanation fits well with previous research and Experiment 2.
A previous study which directly assessed weights in an audio-visual task
found that they are frequently far from the optimal weights in this age
range (Gori et al., 2012), lending plausibility to the explanation above.
Given the results by condition in Experiment 2, we also expect that
feedback must play some sort of role in the correct explanation.

4.1.2. Feedback reducing bias
Under this hypothesis, biases in perception prevent cue combination

and the feedback acts against that effect. Suppose we present two cues
that a target is at some specific point. The participant has a particular
set of relative biases. When both Cue A and Cue B signal the same point,
the participant tends to perceive Cue B as signalling something +10
higher than Cue A. If the standard deviation of perceptions is well less
than 10 for both cues, the participant will typically perceive the two
cues to be signalling irreconcilable states of the world. Under these
conditions, an optimal computation rejects the idea that the two cues
have the same cause and simply uses the more reliable of the two cues
in isolation (Knill, 2007; Shams & Beierholm, 2010). This kind of fil-
tering makes perception more robust to unexpected issues, but, in this
hypothetical, does so at the cost of a bimodal precision advantage.

The feedback would most likely help correct such an issue. It would
provide an objective way to see that perceptions from one cue or the
other (or both) are not just noisy, but on average biased in one direction
or the other and thus should be corrected. This also fits well with theory
regarding cross-calibration (Burr & Gori, 2012), as the single-cue
feedback can serve for this calibration. This also generally fits with the
results of Experiment 2, which suggests some role for feedback in the
current findings. However, we are not aware of any documentation that
children in this age range actually have such severe biases.

As above, it seems plausible that natural experience would not be
sufficient to help children find and correct relative biases for a wide
range of possible stimuli in the audio and visual domain, but that the
focused task of correcting biases on these specific stimuli might be
within reach.

Of course, this explanation is not exclusive with the one above –
children at 7–10 may both have biases and incorrect weights that need
to be adjusted for a bimodal precision advantage. The feedback here
could fill both roles.

If we accept these explanations, it shifts some of the texture of what
cue combination learning models need to explain. At the moment,
models take on the general idea of audio-visual cue combination as
essentially one task where an audio stimulus in horizontal location has
the same reliability as all further possible audio stimuli in the same
place (Daee et al., 2014; Weisswange et al., 2011). The estimated re-
liability parameter for each modality can adapt over long times
(thousands of trials), but there are not, for example, separate reliability
estimates for a dark room versus a brightly lit room. The way that we
are discussing it here, learning the relative reliability of these specific
audio-visual stimuli is not the same as developing an overall model of
how reliable one’s own auditory and visual system are under different
circumstances. Current models do not make it obvious how that kind of
segmentation would occur in cognition.

4.2. Unlikely explanations

In this section, we argue why several additional tempting options
for explaining the current results are unlikely.

4.2.1. Exposure frequency
At the moment, current models do have one implicit aspect that

could differentiate some pairs of cues (Daee et al., 2014; Weisswange
et al., 2011). Specifically, they assume that learning is mainly a func-
tion of the number of joint exposures to the cues, plus some noise.
Therefore, one tempting possibility is that different cue pairs occur with
different frequencies in naturalistic settings and that children learn to
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combine the most common ones first. In a broad sense, we do know
from deprived rearing tasks that this is a relevant variable – for ex-
ample, cats raised in deprivation of co-varying spatial sounds and lights
will fail to show audio-visual localization effects that are consistent
with cue combination (Xu, Yu, Rowland, Stanford, & Stein, 2014).

However, this explanation faces some difficulties. First, it is not
clear that audio-visual localization is something that children can
practice more frequently than visual depth (Dekker et al., 2015), and it
fails to explain why the other audio-visual study (Gori et al., 2012) did
not find a bimodal precision advantage. Second, modelling the acqui-
sition of cue combination as purely a function of cue exposure runs
aground of a recent finding in adults (Negen, Wen, Thaler, & Nardini,
2017). In a 5-h task, adults were able to combine a new audio cue to
depth with a familiar but noisy visual cue to depth. Therefore, some-
thing besides experience is also a strong predictor of learning to com-
bine cues; otherwise, children would combine things like visual depth
cues well before 10 years of age. Perhaps then, it is best to think of a
certain level of exposure frequency as being necessary but not sufficient
to induce cue combination in a specific task.

4.2.2. Better task engagement in our task than previous tasks
Experiment 2′s results suggest that this is, at least, not the entire

explanation for results here. Participants still varied in how likely they
were to combine cues across conditions that all had feedback, all had a
social entity, and all took place in virtual reality. Large differences in
the level of engagement seem unlikely. It also seems unlikely that all of
the previous projects failed to reach a high level of task engagement.
Like exposure frequency, we interpret this as being necessary but not
sufficient.

4.2.3. Feedback providing participants with a Look-Up Table
This possibility has been discussed by previous theory at length

(Maloney & Mamassian, 2009). Under this hypothesis, training allows
participants to associate each specific pairing of single-cue perceptions
with a specific response. In theory, the observer can then make accurate
responses by recalling the best response to each stimulus pairing from
past experience (i.e. using a “look-up table”), and could even show a
bimodal precision advantage with this algorithm. However, this is not a
possibility for the specific design here: in Experiments 1a, 1b, and the
“Single” condition of Experiment 2, we gave no feedback on trials
where they had both cues available, yet participants still showed evi-
dence of cue combination. Even beyond that, participants who were
only given feedback on trials with both cues actually became less likely
to combine them.

4.2.4. Feedback teaching participants the correct algorithm
Along similar lines, a model learner could keep track of the out-

comes of their perceptual decisions and see which of several algorithms
leads to the best performance. In other words, if you look over the
models we compared in Experiment 2, one might imagine a child doing
the same kind of thing in their own mind – but instead of an external
experimenter trying to decipher their preferred strategy, the participant
is trying to decipher the strategy that will lead to the best performance.
This is again a poor fit for the current results for the same reason as
above, the lack of feedback with both cues available. Most participants
would not have anything to fit this against, and the ones who did were
less likely to combine cues.

4.3. Related issues

Given recent findings in adults, we should also point out a related
quandary about development that is also very open. While this study is
the first to show cue combination in children under 10 years, it is
perhaps not actually unique in showing that the combination of some
cues follows a radically different developmental path from visual depth
cues. Specifically, even adults don’t combine certain cues to motion

(e.g., Soyka, de Winkel, Barnett-Cowan, Groen, & Bülthoff, 2011), or at
least vary in whether or not they combine them (e.g., de Winkel et al.,
2013). This is somewhat difficult to explain under current models of
multisensory learning (Daee et al., 2014; Weisswange et al., 2011),
which should always converge on cue combination for any two
common cues to a common judgement. Thus, a truly accurate model of
how cue combination is acquired must explain why this task is learned
earlier, unreinforced visual depth is learned later, and things like an-
gular self-motion might not necessarily be learned at all.

The study of cue combination is a part of the larger realm of
Bayesian Decision Theory. This theory, which suggests that perception
is fundamentally well-represented by a model of internal Bayesian
statistics, creates a wide range of predictions (though c.f. Rahnev &
Denison, 2017). We have taken a step in this direction by not only
showing a bimodal precision advantage, but showing that a model
where children re-weight cues trial-to-trial fits better more frequently
than one with a single fixed weight. This shows some of the re-
weighting predictions to be sensible in this age range, at least for the
right task. A full examination of the broader theory would require some
additional work: when and how children learn to learn prior distribu-
tions (Körding & Wolpert, 2004), learn to maximize gain functions ra-
tionally (Körding & Wolpert, 2006), learn to calibrate confidence
(Sporer, Penrod, Read, & Cutler, 1995), and acquire a causal inference
filter (Shams & Beierholm, 2010). Compared to cue combination, re-
latively little is known about how each of these develop. Understanding
that full breadth is important for a complete theory of multisensory
perceptual development.

4.4. Towards applications in autism, robotics, and sensory augmentation

This task and finding could be used in the future as a comparison
point to work towards a deeper understanding of sensory atypicalities
such as those associated with autism or schizophrenia. Various theories
for various conditions have posited specific differences involving the
integration of information from different modalities (e.g. Baum,
Stevenson, & Wallace, 2015), while others have focused on alternatives
like the learning of prior information (Lawson, Mathys, & Rees, 2017).
The present study has been able to take a closer look at typical devel-
opment and discover a multisensory integration capacity that was not
known before. It could be informative to explore if the bimodal preci-
sion advantage measured here is associated with neurodiversity in any
systematic way. For example, the feedback might be used in different
ways by different populations.

In terms of robotics, our results point towards an interesting sug-
gestion for self-organization. We posit that the children in our task were
not generally capable of solving any arbitrary audio-visual cue combi-
nation problem (Gori et al., 2012), but that the feedback given here
allowed them to create a temporary working solution for a narrow
range of audio-visual stimuli (specifically those used in the task). This
might be part of the path forward for a robot attempting to adapt to
different environments as well (Lake et al., 2017). It might be most
effective, or at least most human-like, if a robot were to develop smaller
solutions to more restricted and common cue combination problems
and then to generalize much later from that set of smaller solutions.

In terms of sensory augmentation, two studies have been done that
stand in stark contrast. One found that adults can integrate augmented
sensory skills with their typical repertoire (Negen, Wen, Thaler, &
Nardini, 2017), but the other found that they did not (Goeke et al.,
2016). The study with feedback showed integration, but not the study
without feedback. The present study shows that in young participants,
feedback can be an important variable. This suggests an overall pattern
that remains important into adulthood, with a strong emphasis on
frequent feedback in order to help participants learn how to integrate a
sensory skill. It may be that single-cue feedback is particularly effective
for adults learning to integrate a new sensory skill as well.
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4.5. Conclusion

Across three independent experiments, we found evidence that
children between 7 and 10 years old can combine audio-visual cues to
location in a way that is more precise than either single cue alone. This
establishes that cue combination is possible before 10 years of age in
some tasks. Comparing with previous research, this further establishes
that cue combination emerges at different points in development for
different tasks. We propose that this is most likely to be due to the
feedback given during the task, rather than the other details of the task
chosen. This interpretation suggests specifically that children between 7
and 10 years are able to combine cues with some intensive experience
to calibrate the two cues (correcting biases and/or assessing relative
reliability), but will not do the same if forced to rely on their natural
experience with them. Current models of the developmental process do
not account for this and should be extended to create a better theory of
how cue combination develops.
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