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Abstract 

Studying how sensory signals from different sources (sensory cues) are integrated within or across 

multiple senses allows us to better understand the perceptual computations that lie at the foundation of 

adaptive behaviour. As such, determining the presence of precision gains – the classic hallmark of cue 

combination – is important for characterising perceptual systems, their development and functioning in 

clinical conditions. However, empirically measuring precision gains to distinguish cue combination from 

alternative perceptual strategies requires careful methodological considerations. Here, we note that the 

majority of existing studies that tested for cue combination either omitted the important analysis 

contrast, or used an approach that, unknowingly, strongly inflated false positives. Using simulations, we 

demonstrate that this approach enhances the chances of finding significant cue combination effects in 

up to 100% of cases, even when cues are not combined. We establish how this error arises when the 

wrong cue comparator is chosen and recommend an alternative analysis that is easy to implement but 

has only been adopted by relatively few studies. By comparing combined-cue perceptual precision with 

the best single-cue precision, determined for each observer individually rather than at group-level, 

researchers can enhance the credibility of their reported effects. We also note that testing for deviations 

from optimal predictions alone is not sufficient to ascertain whether cues are combined. Taken together, 

to correctly test for perceptual precision gains we advocate for a careful comparator selection and task 

design to ensure that cue combination is tested with maximum power, while reducing the inflation of 

false positives. 
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1. General introduction to multisensory integration/ cue combination 1 

Almost all environmental features can be perceived by means of multiple sensory signals that arise 2 

from different sources, also called sensory cues (see Table 1 for a list of frequently used terms). If two 3 

or more cues redundantly code for the same environmental feature they can be integrated into the same 4 

perceptual representation. For instance, when determining the impact location of a bouncing ball, the 5 

observer can derive information about the location from both visual and auditory cues. Integrating these 6 

different sensory cues into a unified and coherent perceptual representation is a crucial process that 7 

allows humans to efficiently perceive and interact with their environment (Alais & Burr, 2019; Clark & 8 

Yuille, 1990; Ernst & Bülthoff, 2004; Landy et al., 1995; Stein et al., 2020; Wallace et al., 2020). An 9 

important feature that derives from the integration of multiple sensory cues is that the final, combined 10 

perceptual estimate is more precise than the perceptual estimates from each individual cue alone (Alais 11 

& Burr, 2019; Battaglia et al., 2003; Clark & Yuille, 1990; Ernst & Bülthoff, 2004). In other words, 12 

integrating information across multiple sensory modalities (or within sensory modalities) enhances 13 

perceptual precision. 14 

Table 1. Description of frequently used terms 15 

Term Description 

Cue A signal that arrives at our sensory receptors and contains information 
about its underlying source (environmental feature such as location, size, 
distance, weight, etc.)  
 

Sensory noise 
𝝈 

Measure that describes the uncertainty of a cue. Typically, this is 
estimated from the variability of the data distribution, or inverse slope of 
the psychometric function. 
 

Best cue 
𝒎𝒊𝒏(𝝈𝟏, 𝝈𝟐) 
  

Single cue with the lowest sensory noise (out of cue 1 and cue 2).  

Worst cue 
𝒎𝒂𝒙(𝝈𝟏, 𝝈𝟐) 
  

Single cue with the highest sensory noise (out of cue 1 and cue 2). 
  

Cue comparator 
  

Single cue, for which the sensory noise is compared against that of both 
cues, to test for combination benefits. 
  

Group-determined best 
cue analysis 
𝝈𝟏𝟐 𝒗𝒔. 𝝈𝟏 ; 𝝈𝟏𝟐 𝒗𝒔. 𝝈𝟐 

Sensory noise of the best (and worst) cue(s), selected at the level of the 
group, is compared with that of both cues. This is equivalent to comparing 
the raw individual cues to both cues (e.g., in an audio-visual paradigm: 
auditory vs audio-visual, visual vs audio-visual). 
  

Individually-determined 
best cue analysis  
𝝈𝟏𝟐 𝒗𝒔. 𝒎𝒊𝒏(𝝈𝟏, 𝝈𝟐) 
  

Sensory noise of the best cue, selected at the level of the individual 
observer, is compared with that of both cues. 
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Within-participant cue 
ratio 
max(𝝈𝟏, 𝝈𝟐) / min(𝝈𝟏, 𝝈𝟐) 
  

Sensory noise of the worst cue over the sensory noise of the best cue, 
determined for each participant. 
  

Between-participant cue 
ratio proportion 
% 𝝈𝟐 < 𝝈𝟏 
  

Proportion of participants for whom cue 1 has lower sensory noise than 
cue 2, determined at the group-level. 
  

True combination effect A statistically meaningful effect that truly reflects an increase in perceptual 
precision due to cue combination. 
 

False combination effect A statistically meaningful effect that seems to reflect an increase in 
perceptual precision due to cue combination, but results from the inflation 
of false positives. 
 

 16 

Cue combination is nested in the processing hierarchy between low-level sensory processing and high-17 

level conceptual representations. As a target of experimental investigation, it allows us to understand 18 

how we can gain a coherent percept of our environment from the complex and noisy signals that arrive 19 

at our senses at any moment in time. ‘Noisy’ (or sensory noise) refers to the uncertainty that is inherent 20 

to all sensory signals and their neural encoding (Faisal et al., 2008), and is typically reflected in the 21 

variability of perceptual judgements. As such, studying cue combination provides a powerful approach 22 

to understanding perceptual processes as a form of probabilistic inference. A large body of research 23 

from the last two decades reported that probabilistic inference is consistent with common perceptual 24 

phenomena (e.g., Ernst & Banks, 2002; Knill & Saunders, 2003; Körding et al., 2007; Trommershäuser 25 

et al., 2012), illusions (Alais & Burr, 2004; Scheller et al., under review; Shams et al., 2005; Weiss et 26 

al., 2002), and allows to trace important perceptual differences between developmental or clinical 27 

groups (Bultitude & Petrini, 2021; Gori et al., 2008; Nardini et al., 2008; Nava et al., 2020; Negen et al., 28 

2019; Petrini et al., 2014; Ramkhalawansingh et al., 2018; Scheller et al., 2020; Senna et al., 2021).  29 

However, while methodological approaches to (behaviourally) quantify cue combination have been 30 

influenced by a small number of rigorous, psychophysical studies (e.g., Alais & Burr, 2004; Ernst & 31 

Banks, 2002; Hillis et al., 2004; see Rohde et al., 2016 for a tutorial), the last two decades have seen 32 

developments and diversification in procedures and analysis approaches. Most of them allow us to 33 

better understand different aspects of integration, to apply more rigorous approaches in differentiating 34 

integration from cognitive, perceptual, or design-induced biases, or to distinguish integration from 35 

alternative perceptual and cognitive mechanisms (Aston, Negen, et al., 2022; Ernst, 2012; Landy & 36 

Kojima, 2001; Moscatelli et al., 2012; Nardini et al., 2010; Otto et al., 2013; Rohde et al., 2016; Scarfe, 37 
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2022; Van Dam et al., 2014). At the same time, increasing popularity of the topic has led to the adoption 38 

of analyses that may not directly test one of the fundamental features of integration, that is, whether the 39 

combination of two cues leads to perceptually beneficial precision enhancement, relative to using either 40 

cue alone. In fact, the defining feature of cue combination – which most studies also state as the main 41 

reason for its investigation – is the enhancement of perceptual precision. As stated by Ernst & Bülthoff 42 

in their seminal work in 2004: “[…], the main purpose of sensory integration is to make the estimates 43 

more reliable. That is, there should be an observable reduction in variance compared with the individual 44 

estimates” (Ernst & Bülthoff, 2004, p. 165). 45 

The present work argues that one of the most widely used criteria in testing for cue combination 46 

behaviour should be revisited, as its use suffers from an inflation of false positives, especially when 47 

certain design choices are not considered. Unfortunately, the analysis applied by the majority of studies 48 

that tested for cue combination falls into this category1. The present study further outlines under which 49 

conditions the inflation of false positives can occur, and how this pitfall can be avoided by following 50 

some simple steps.  51 

First, this paper will introduce the concept of cue combination, outlining its most important experimental 52 

marker (a benefit in perceptual precision), and how this can be tested in a formalized way. It will also 53 

outline some of the other markers that researchers frequently test for, such as whether the magnitude 54 

of the benefit can be predicted by models of statistical optimality (see section 2). We argue that such a 55 

test alone is not sufficient to evidence that two cues are indeed combined. Instead, comparisons have 56 

to be made between the individual cues and the combined cues. We further show how a researcher’s 57 

ability to measure cue combination depends on several participant-specific characteristics, such as the 58 

absolute and relative sensory noise levels of the individual cues. These determine the maximum 59 

possible benefit (i.e., maximum effect size) that an observer can obtain from combining sensory cues. 60 

As maximizing the possible benefit reduces the impact of measurement noise, we outline how taking 61 

 
1Out of 45 studies that we screened, published between 2002 and 2022 (see section 3), 80% employed this error-

prone analysis to test for cue combination. Furthermore, these studies were, on average, published in higher impact 

factor journals (average ± CI95%: 4.8 ± 1 vs 3.4 ± 0.8) and received more citations per year (average ± CI95%: 10.7 

± 3.1 vs 6.2 ± 4.1; note that two very highly cited papers, Ernst & Banks, 2002, and Alais & Burr, 2004, are not 

included in these numbers). This is problematic, as it suggests that some of the more influential evidence is 

grounded on an error-prone analysis. Furthermore, it suggests that these wrong analysis choices are likely to 

perpetuate throughout the literature. 
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these participant-specific characteristics into account when designing experiments can enhance our 62 

ability to measure combination. 63 

Next, we summarize different approaches that previous studies have employed to test for cue 64 

combination and evaluate the most commonly used methods, focusing on group-based rather than 65 

individual-observer analyses. In these approaches, researchers typically contrast the perceptual 66 

precision of observers when they are presented with two cues at the same time versus when they are 67 

presented with the individual, single cues. The cue comparator, that is the individual cue precision that 68 

is contrasted with the combined cue precision, differs between the methods that have been employed 69 

in the literature: the most common method uses the group-determined best cue as comparator, while 70 

the less common method uses the individually-determined best cue as cue comparator. By generating 71 

data for an example experiment in which observers do not combine cues, we demonstrate the effect 72 

that the two different cue comparators have on measuring cue combination. We then show how the 73 

chances of finding true and false combination effects changes depending on the choice of cue 74 

comparator, as well as the maximum possible benefit. Lastly, by simulating data for an example 75 

standard cue combination experiment, we illustrate the degree of the problem that arises from using 76 

the wrong comparator, that is, the group-determined best cue. These simulations show that, if choosing 77 

this comparator, our chances of finding false positives increases up to 100%. Instead, when using the 78 

individually-determined best single cue as comparator, false positive rates are kept below the generally 79 

accepted 5% rate. 80 

 81 

2. Formalization and features of reliability-weighted/statistically optimal cue combination  82 

Cue combination studies compare perceptual precision of two cues (e.g., an auditory and a visual cue 83 

to a target’s location) presented together with the perceptual precision of either cue on its own. Placing 84 

cue combination within the framework of statistically optimal integration, the magnitude of perceptual 85 

benefits when given both cues together vs either alone in well-controlled laboratory experiments is often 86 

consistent with a weighted linear combination of the two cues (Alais & Burr, 2004; Ernst & Banks, 2002; 87 

Hillis et al., 2004). Formally expressed, when perceiving an object feature via redundant information, 88 

each cue (i = 1, 2, …, n) can be represented as an independent, sensory estimate (𝜇1, 𝜇2, …, 𝜇𝑛) of the 89 

external stimulus property (X) that is corrupted by sensory noise (𝜎1, 𝜎2, … , 𝜎𝑛), such that 𝜇𝑖  ~ 𝑁(𝑋, 𝜎𝑖
2). 90 
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The noise of a cue can be taken as a measure of sensory uncertainty during probabilistic perceptual 91 

processes. The inverse of a cue’s noise is expressed as its reliability rel, i.e., 𝑟𝑒𝑙𝑖 =  𝜎𝑖
−2. In most cases 92 

researchers can assume that the noise is normally distributed and is not correlated across cues (Ernst, 93 

2007; Rohde et al., 2016) although this may not always be the case (Ernst, 2012; Oruç et al., 2003). 94 

Under these assumptions, the combination of two cues that are weighed by their individual reliabilities, 95 

𝜔 = 𝑟𝑒𝑙𝑖/ ∑ 𝑟𝑒𝑙𝑖𝑖 , would lead to reductions in sensory noise in line with Maximum Likelihood Estimation 96 

(MLE). Hence, the smallest possible sensory noise that can be achieved via reliability-weighted 97 

integration, 𝜎12,𝑚𝑙𝑒, is given by: 98 

𝜎12,𝑚𝑙𝑒 =  √
𝜎1

2 ∙ 𝜎2
2

𝜎1
2 + 𝜎2

2   equation (1) 99 

As this optimal estimate takes the single cue reliabilities into account, the maximum possible benefit 100 

that an observer can gain by integrating two cues by their relative reliabilities (and hence, the maximum 101 

possible benefit that a researcher can expect to measure: 𝐵𝑚𝑎𝑥 = 𝜎𝑏𝑒𝑠𝑡 −  𝜎12,𝑚𝑙𝑒
2) is influenced by the 102 

absolute sensory noise of the best single cue, as well as the sensory noise ratio between the two single 103 

cues (ratio = max(𝜎1, 𝜎2) / min(𝜎1, 𝜎2); see Figure 1).  104 

 105 

 
2Note that measurement noise arising from parameter estimation and design parameters such as stimulus spacing 

and stimulus repetitions (Prins, 2012) affects sensory noise estimates across all conditions, affording the possibility 

of an underestimation (leading to apparent supra-optimal performance) or overestimation (apparent sub-optimal 

performance) of the true maximum possible benefit. 
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Figure 1: (a) The maximum possible benefit (Bmax) that the perceptual system can achieve by combining two 106 

redundant cues in a reliability-weighted fashion. Plot shows how the maximum benefit is derived from the sensory 107 

noise level difference between the best sensory cue, min(𝜎1, 𝜎2), and the optimal prediction, 𝜎12,𝑚𝑙𝑒 (equation 1). 108 

(b) As the maximum benefit follows from the sensory noise values of both individual cues (𝜎12,𝑚𝑙𝑒) its magnitude 109 

depends on the absolute sensory noise in the best single cue, as well as the sensory noise ratios of both single 110 

cues. Increasing sensory noise in the best cue and matched cue ratios lead to a larger possible benefit. 111 

 112 

Larger sensory noise values in the individual cue conditions can lead to a larger potential benefit, in line 113 

with the inverse effectiveness principle, which has been frequently evidenced in studies on the neural 114 

mechanisms underlying multisensory integration as well as behaviour (Frassinetti et al., 2002; Hecht et 115 

al., 2008; Meredith & Stein, 1986; Møller et al., 2018; Stein et al., 1988, 2009, 1989; Stevenson et al., 116 

2012). That is, the enhancement in neural responses and perceptual precision that are obtained from 117 

combining two cues is larger when uncertainty in the two single cues is high and more similar. Hence, 118 

in order to allow for a larger benefit and, therefore, possible effect size, researchers might be inclined 119 

to design experiments in which individual cue noise is high.  120 

However, aiming to attain very large sensory noise values can pose serious issues for measuring cue 121 

combination. For instance, as large sensory noise values translate into impoverished stimulus 122 

representations and low stimulus discriminability, they necessitate making perception more difficult by 123 

means of decreasing stimulus reliability (for instance by selecting a narrower stimulus range). Practically 124 

implemented, this can lead to demotivation in participants, decreases in attention, and lower data 125 

quality. At the same time, if sensory noise is extracted from modelling the task data, such as with two-126 

alternative-forced-choice (2AFC) response tasks, and responses do not plateau at extreme stimulus 127 

levels, this complicates parameter estimation by leading to lower differentiability of sensory noise and 128 

lapses (nuisance related to noise that is tangential to the decision;  Prins, 2012; Wichmann & Hill, 2001). 129 

Overall, higher sensory noise values are more difficult to recover as they are less distinguishable from 130 

lapses (more details in supplementary material). Hence, we do not recommend that researchers aim to 131 

increase the sensory noise in the best single cue, to enhance their ability of measuring cue combination 132 

effects. Instead, the cue noise ratio of the individual cues should be considered. 133 
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Indeed, the maximum possible reduction in uncertainty is not only affected by the best cue’s absolute 134 

sensory noise, but also by the relative reliabilities of the two cues, that is, the uncertainty ratio of the 135 

worst to the best cues (henceforth: within-participant cue ratio). This is an important consideration for 136 

cue combination assessments and has also been clearly outlined in previous work (Scarfe, 2022). While 137 

well-matched cues (within-participant cue ratio = 1) allow for larger reductions in uncertainty, an 138 

increase in the ratio markedly reduces the possible benefit that can be measured. In some instances, 139 

such as when individual cue reliabilities are not well-matched, optimal predictions cannot be 140 

distinguished from the best single cue (e.g., de Winkel et al., 2010). This is because the maximum 141 

possible benefit can become even smaller than the measurement error (e.g., parameter estimation 142 

uncertainty). Hence, when within-participant cue ratios are high it becomes more difficult to determine 143 

whether the nervous system truly implements statistically optimal integration, or whether the less 144 

precise single cue is discounted and the more precise single cue is followed (see also Scarfe, 2022).  145 

Which cue is most informative can further differ between individual observers. Due to large inter-146 

individual differences in sensory reliabilities, it is challenging to anticipate both the best cue noise levels, 147 

and the within-participant cue ratios for a group of participants. However, Figure 1b demonstrates how 148 

much the possible benefit (i.e., the largest possible effect size) depends on those participant-specific 149 

characteristics. This not only makes sample size and power estimation difficult, but also emphasizes 150 

that most cue combination studies are dealing with very small (maximum possible) effect sizes. Single 151 

studies have often attempted to achieve higher power either (1) by minimizing measurement noise 152 

through robust designs with many repetitions and individual threshold-calibrations in small samples 153 

using individual observer analyses3 (n ≤ 8; e.g., Alais & Burr, 2004; Ernst & Banks, 2002; Rosas et al., 154 

2005) or (2) by testing larger, more representative samples of individuals and applying group-level 155 

analysis (e.g., Adams, 2016; Gori et al., 2008; Helbig & Ernst, 2007, 2008; Jicol et al., 2020; Meijer et 156 

al., 2019; Nardini et al., 2008; Newman & McNamara, 2021; Plaisier et al., 2014; Zhao & Warren, 2015). 157 

However, a priori power estimation has rarely been conducted in cue combination studies (see also 158 

 
3 Studies that employed individual-level analyses typically aimed to enhance power by minimizing measurement 

error (for instance, by including a large number of trials per condition or testing multiple levels of noise and conflict 

in each participant). This typically requires participants to return for multiple sessions and limits the feasibility to 

test a large number of participants (trade-off between measurement precision and sample size). 
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Scarfe, 2020), typically because these participant-specific characteristics are difficult to gauge if they 159 

are not individually calibrated in advance (but see Meijer et al., 2019). 160 

3. Different approaches to quantifying cue combination 161 

Over the years, multiple different ways of analysing and quantifying cue combination have been 162 

employed. While the most frequently used analyses were conducted at the group-level, a small number 163 

of early but influential studies conducted individual-level analyses, typically with smaller samples being 164 

tested. In some cases, more than one analysis, or additional visualization strategies were used to 165 

evidence integration. A summary of these previously employed approaches is outlined below.4 166 

(a) The most common way in which cue combination has been evidenced in previous studies is 167 

through contrasting sensory noise of the combined cue condition with that of the individual, 168 

single cues (separated by cue type). For example, in a visuo-haptic paradigm where 𝜎1 denotes 169 

the sensory noise of the visual cue and 𝜎2 denotes the sensory noise of the haptic cue, Helbig 170 

& Ernst (2007) compared the sensory noise levels of the visuo-haptic combined condition 𝜎12 171 

with the single-cue visual condition and the single-cue haptic condition. This contrast is given 172 

by: 173 

𝜎12 𝑣𝑠. 𝜎1   ;    𝜎12 𝑣𝑠. 𝜎2    equation (2) 174 

By splitting the single cue comparators by their cue type, data from observers with higher 175 

precision in cue type 1 compared to cue type 2, and vice versa, are mixed. Hence, the main 176 

comparators that bimodal performance is contrasted with are the ‘group-determined best’ and 177 

‘group-determined worst’ cues. Sometimes, only the group-determined best cue is used as 178 

comparator, as significant effects relative to this cue can make the contrast with the group-179 

determined worst cue redundant. The vast majority of studies that tested for cue combination 180 

used this approach (e.g., (Adams, 2016; Bates & Wolbers, 2014; Bultitude & Petrini, 2021; Burr 181 

et al., 2009; Chancel et al., 2016; Chen et al., 2017; Elliott et al., 2010; Ernst & Banks, 2002; 182 

Fetsch et al., 2009; Frissen et al., 2011; Gabriel et al., 2022; Gibo et al., 2017; Goeke et al., 183 

 
4 These studies typically used a measure of precision to quantify cue combination, however, similar methods 

have been employed to evidence multisensory benefits through accuracy (or signal detection) and response time 

measures (e.g., (Collignon et al., 2008; Denervaud et al., 2020; Girard et al., 2011; Heffer et al., 2022; Murray et 

al., 2018; Petrini et al., 2010).  
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2016; Gori et al., 2008, 2021; Gori, Giuliana, et al., 2012; Gori, Sandini, et al., 2012; Helbig & 184 

Ernst, 2007, 2008; Jicol et al., 2020; Jürgens & Becker, 2006; MacNeilage et al., 2007; Nardini 185 

et al., 2008, 2010; Newman & McNamara, 2021, 2022; Petrini et al., 2014, 2016; 186 

Ramkhalawansingh et al., 2018; Risso et al., 2020; Scheller et al., 2020; Seminati et al., 2022; 187 

Senna et al., 2021; Sjolund et al., 2018; Zanchi et al., 2022; Zhao & Warren, 2015).  188 

(b) Another way in which cue combination has been evidenced at the group-level is by contrasting 189 

the combined cue condition with the individually-determined best cue. Here, an additional step 190 

is implemented in the analysis that determines, for each observer, which of the two individual 191 

cues is less noisy. This less noisy (i.e., individually-determined best) cue is then used as a 192 

comparator in group-analyses to test for benefits in precision: 193 

𝜎12 𝑣𝑠. min (𝜎1, 𝜎2)      equation (3) 194 

However, while this additional step is necessary to truly test for precision benefits in perception 195 

at the group level, a much smaller number of studies has employed this approach (Alais & Burr, 196 

2004; Arnold et al., 2019; Aston, Beierholm, et al., 2022; Ball et al., 2017; Butler et al., 2010; 197 

Garcia et al., 2017; Negen et al., 2018, 2019; Plaisier et al., 2014). 198 

(c) Additionally, alongside employing one of the above analysis, perceptual benefits are frequently 199 

tested for optimality. That is, the sensory noise of the combined condition is contrasted with the 200 

lowest possible sensory noise, which is obtained from MLE predictions.  201 

𝜎12 𝑣𝑠. 𝜎12,𝑚𝑙𝑒   equation (4) 202 

As the predicted optimal performance provides a useful minimum possible comparator that is 203 

scaled by the individual cue noise values, it makes it possible to test whether any benefit shown 204 

in the previous analysis also meets the predictions of statistical optimality (Rohde et al., 2016). 205 

In other words, it accounts for the fact that some individuals may only obtain a small benefit 206 

from combining two cues, such as when sensory noise ratios are high, while other individuals 207 

can gain a larger benefit. A number of more recent studies made use of this prediction and 208 

quantified the benefit of cue combination through the difference in sensory noise between the 209 

combined cue condition and the MLE predictions (Heffer et al., 2022; Nava et al., 2020; Scheller 210 

et al., 2020; Senna et al., 2021): 211 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =  𝜎12 −  𝜎12,𝑚𝑙𝑒  equation (5) 212 
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As most of these studies investigated the effects of (sub-)clinical conditions or development on 213 

multisensory integration, this difference score provided a useful approximation of the degree of 214 

integration, relative to the maximum benefit, that could then be contrasted between groups. 215 

However, it should be noted that reporting this score or contrast with the MLE prediction alone 216 

(e.g., Nava et al., 2020; Takahashi et al., 2009; Takahashi & Watt, 2017) does not provide 217 

evidence that two cues were indeed combined. In other words, it is unclear whether the groups 218 

differed in integration, or changes in the maximum possible benefit. Without contrasting the 219 

empirically measured bimodal sensory noise levels with single cue sensory noise levels, 220 

perceptual benefits that exceed the best single cue performance cannot be evidenced, and it 221 

cannot be ascertained that cues were combined. Therefore, such combination indices should 222 

only be used in addition (e.g., as in Heffer et al., 2022; Scheller et al., 2020; Senna et al., 2021) 223 

but not instead of the crucial analysis that tests for cue combination. 224 

(d) Some further studies, especially those that included small samples (N ≤ 8) as a result of more 225 

complex designs (e.g., multiple levels of conflict and noise manipulations, multiple sessions, 226 

rare patient groups or slow presentation options) based their conclusions on comparisons at 227 

the individual observer level (de Winkel et al., 2013; Oruç et al., 2003; Risso et al., 2019; Rosas 228 

et al., 2005) which often included bootstrapping, or even purely visual/descriptive approaches5. 229 

While this allows inferences about integration benefits (based on individuals’ comparisons 230 

between the best and combined cues), it can still be problematic: given that the possible benefit 231 

that can be gained from optimal integration is rather small, this approach often lacks the 232 

statistical power to detect such small benefits. This is especially true when individual measures 233 

derive from little data and parameter estimates are affected by measurement noise that is larger 234 

than the possibly obtainable benefit. Notably, measurement noise is often not quantified or 235 

accounted for, but can be partially averaged out by employing a group-based approach. 236 

 
5 As the theory-derived statistical optimality model provides point predictions (i.e., a quantified estimation of the 

expected benefit), individual-level analyses in small samples can be sufficiently meaningful to draw some 

conclusions about optimality of cue combination. However, there are a number of limitations associated with this 

approach beyond the reduced generalizability of the findings. For instance, both the empirically determined 

combined cue noise and the optimal point prediction, which is based on the empirically determined single cue noise 

levels, remains affected by measurement noise. Hence, deviations from the point prediction can be expected simply 

based on measurement variability. Inferring whether the magnitude of deviation from point predictions arises from 

measurement noise or sub-optimality of the perceptual process is therefore often not possible. Nevertheless, while 

the focus of the present paper lies on the group-based analysis of combination effects, which has been most 

frequently employed, individual-based analyses that adopt a statistical (e.g., bootstrap) approach remain a viable 

alternative. 
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Nevertheless, testing large groups of participants with complex designs is not always feasible 237 

to address certain questions. Hence, careful design, such as calibrating single cues (to increase 238 

the possible benefit) or increasing the number of stimulus repetitions for each stimulus level (to 239 

decrease measurement noise) can improve small sample studies that rely on individual-based 240 

comparisons. 241 

(e) Some cue combination studies employed more than one approach, and complemented group- 242 

based statistical analyses with additional, observer-based visualizations or descriptives 243 

(Kaliuzhna et al., 2015; Meijer et al., 2019; Nardini et al., 2013; Petrini et al., 2014; Rosas et 244 

al., 2005; Scheller et al., 2020). Providing such additional evidence is useful in that it allows to 245 

determine whether integration was beneficial for a certain proportion or sub-group of observers 246 

within the whole sample. However, making judgements about the combination of cues based 247 

on visual and descriptive comparisons alone is highly problematic (see also Scarfe, 2022), and 248 

should therefore only be used as complementing information, but not sole evidence for cue 249 

combination.  250 

 251 

4. Present study  252 

In previous studies, the rationale for choosing a specific analysis approach has rarely been explicitly 253 

stated. Are these approaches equally powerful in determining true cue combination effects? Crucially, 254 

most studies state that they test for cue combination because it benefits perception by reducing sensory 255 

noise in the combined estimates. We therefore argue that in order to evidence true cue combination, 256 

the crucial comparison should not be limited to whether bimodal noise levels differ from optimal 257 

predictions, but, more fundamentally, whether bimodal noise levels are reduced (improved) relative to 258 

the noise levels of single cues.  259 

Furthermore, by acknowledging that perception is a process that takes place within, rather than across 260 

individuals, it becomes evident that the reference cue against which bimodal noise levels are compared 261 

is not determined at the group level, but instead at the level of the individual participant (Grice et al., 262 

2017; Smith & Little, 2018). Therefore, the critical test for cue combination at group-level is whether the 263 

measured bimodal noise levels are lower than that of the observers’ best single cue noise levels. By 264 

employing group analyses that use the group-determined best single cue noises as comparators, many 265 
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researchers have unknowingly enhanced the occurrence of false positives in their research design. The 266 

following example scenario demonstrates how this can happen. 267 

 268 

5. Effects of the different cue contrasts 269 

Suppose we are interested in finding whether two cues are combined to perceive the depth of an object 270 

in space. For each of the two cues, as well as the combined condition, we collect repeated depth 271 

judgements in a 2AFC paradigm and derive sensory noise values (discrimination thresholds / just-272 

noticeable-differences / response variability) for 18 naïve observers. This is around the average number 273 

of participants that is included in many cue combination studies (e.g., Chancel et al., 2016; Goeke et 274 

al., 2016; Nardini et al., 2008; Petrini et al., 2016; Ramkhalawansingh et al., 2018). Let us further 275 

suppose that for five of these participants cue 1 is more precise than cue 2, while for the remaining 13 276 

participants cue 2 is more precise. That means, the between-participant cue ratio proportion is 72% 𝜎2 277 

< 𝜎1. There is large variability in the literature in the between-participant cue ratio proportion, and most 278 

studies do not even report this measure. However, when attempting to match the individual cue 279 

reliabilities (as we recommend above, and has been recommended by Rohde et al., 2016 and Scarfe, 280 

2022) it can be expected that the proportion of participants for whom cue 2 is more precise than cue 1 281 

approaches an even split of around 50%. This is an important factor to bear in mind for the choice of 282 

analysis (see below). For demonstration purposes, let the within-participant cue ratio of the worst to 283 

best cue be 3 for all individuals. Again, this is a parameter that strongly affects our ability to find cue 284 

combination but is typically not reported in the literature. Lastly, in our example the combined cue 285 

sensory noise was drawn from a normal distribution centred on the best sensory cue, with a SD of 0.02, 286 

which can be expected from measurement noise alone. In other words, on average, participants 287 

followed the best sensory cue (they did not integrate the cues), but there was a small degree of variation 288 

at the individual level.  289 

In order to assess the evidence for cue combination, we are now interested in testing whether noise 290 

levels are reduced in the bimodal cue condition. However, depending on the single-cue condition that 291 

is used as comparator (section 3a vs section 3b), the outcome of our analysis differs starkly. Figure 2 292 

illustrates this visually. It shows the same sensory noise values for each cue condition plotted either 293 

with the group-determined best and worst cues (i.e., section 3a, Figure 2a) or with the individually-294 
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determined best and worst cues (section 3b, Figure 2b). By contrasting sensory noise of the combined 295 

cue condition with that of group-determines best and worst cues (or even just the group-determined 296 

best cue, i.e., cue 2 in Figure 2a), the higher sensory noise value in the comparator suggests that there 297 

is an appreciable benefit in the combined condition. However, when looking at the individual sensory 298 

noise values (smaller figure within the same panel), it becomes clear that the suggestive benefit results 299 

only from an averaging-induced increase in sensory noise levels of the cue comparator: cue 2. 300 

Furthermore, due to the large within-participant cue ratio, which appears to be reduced by averaging 301 

over individuals, the maximum possible benefit appears larger in the left panel. However, the actual 302 

maximum possible benefit remains very small, as can be seen in the individual observer plot as well as 303 

the right panel (Figure 3b).  304 

 305 

Figure 2: Visual demonstration of the effects of the two analysis methods. Left and right panels plot the same 306 

sensory noise values for a simulated experiment with 18 observers (see main text for details). Larger panels show 307 

the sensory noise values averaged across the group, while smaller inlets show the data of the individual observers. 308 

The difference between panels (a) and (b) is the split of the single-cue conditions, which form the cue comparators 309 

for the combined condition (both): Figure (a) indicates the more common analysis whereby the combined cue 310 

condition is contrasted with the group-determined worst and group-determined best single cues (similar to splitting 311 

them by sensory modality, e.g., visual, haptic). Figure (b) indicates the less common, but correct, analysis, whereby 312 

the combined cue condition is contrasted with the individually-determined best sensory cue. Error bars indicate 313 

95% confidence intervals. Despite using the same data, the results we obtain when testing for precision benefits 314 

differ between the analyses shown in panel (a) and (b): Paired signed-rank tests indicate significant improvements 315 

for paired cue conditions when compared with the group-determined best and worst cues (panel a: Cue1 vs Both: 316 
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p = .002; Cue 2 vs Both: p = .003; p-values are Holm-Bonferroni corrected), but not when compared with the 317 

individually-determined best cue (panel b: Best vs. Both: p = .388). In panel (a), this indicates a false combination 318 

effect, resulting from the inflation of sensory noise levels in cue 2, leading us to the erroneous conclusion that 319 

observers combined the cues, when they are not. Note that, in both cases the combined cue noise does not differ 320 

from MLE predictions. While the true possible benefit that can be obtained from optimal combination is very small 321 

in both cases (Bmax = MLE - best cue; Here, Bmax = 0.01), averaging across sensory noise values before selecting 322 

the best and worst cues for each observer reduces the apparent sensory noise ratio of the single cues and thereby 323 

exaggerates the apparent magnitude Bmax.  324 

 325 

By contrasting the combined condition with the group-determined best cue, we observe a significant 326 

decrease in sensory noise in the combined condition (Figure 2b). We call this false positive a false 327 

combination effect. It describes a significant reduction in sensory noise when both cues are available, 328 

compared to the individual single cues, resulting from an inflation of the single cue noise levels rather 329 

than a true noise reduction (precision increase) in perception. This false combination effect remains 330 

significant even after adjusting for multiple comparisons. Hence, adopting this analysis approach would 331 

lead us to conclude that the participants in our example experiment gain precision by combining both 332 

cues in a near-optimal fashion, even though there is no true combination effect in the data. A true 333 

combination effect is described as a significant reduction in sensory noise when both cues are 334 

presented together, compared to the best single cue, as a result of a real increase in perceptual 335 

precision.  336 

By contrasting the sensory noise of the combined cue condition with the best single cue, selected for 337 

each participant individually, we find that there is no significant reduction in sensory noise, and hence, 338 

no precision enhancement. This accurately reflects the true negative that is given by our example. We 339 

further see that the minimal possible benefit in precision (indicated by the best vs MLE predicted noise 340 

values; average Bmax = 0.009) that results from the high sensory noise ratio between the two individual 341 

cues makes it very difficult to distinguish ‘optimal combination’ from ‘no combination’. This would be 342 

particularly problematic in a real data set in which true combination could potentially occur – however, 343 

as we have knowledge about the underlying distributions in our example data, we can be certain that 344 

we should not find any systematic precision improvement. 345 
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Crucially, the individual observers’ perceptual characteristics (e.g., the absolute cue noise levels) affect 346 

not only how large the maximum benefit is that can be obtained from optimal combination (as outlined 347 

in section 1.2), but therefore also the degree of alpha error inflation when the group-determined best 348 

(and worst) single cue(s) is chosen as comparator. That is, as observers differ in their perceptual 349 

abilities, some participants would naturally end up with one cue being better than the other. The 350 

proportion of observers that show lower sensory noise levels in one cue compared to the other cue 351 

(henceforth: between-participant cue ratio proportion) determines whether we are more likely to find a 352 

true or false combination effect. To investigate further how the expected alpha error changes as a 353 

function of this between-participant cue ratio proportion in the sample, we calculated the maximum 354 

possible benefit (Bmax) an ideal observer can obtain, under different proportions. As a larger Bmax 355 

magnitude decreases the relative influence of measurement noise – assuming measurement noise 356 

stays constant – it enhances the chances of finding (true and false) combination effects. Furthermore, 357 

as outlined in section 1.2, the magnitude of Bmax is largest for high sensory noise values in the single 358 

cues and for low within-participant cue ratios.  359 

Importantly, the maximum possible benefit is not affected by the proportion of observers for whom one 360 

specific cue is the more precise than the other one (i.e., the between-participant cue ratio proportion) 361 

when the comparator in the analysis is the individually-determined best single cue (equation 3; Figure 362 

3, top row). However, when the comparator in the analysis is the group-determined best single cue 363 

(equivalent to contrasting Cue 2 and both cues in our example above; equation 2), the possible benefit 364 

Bmax appears to be larger (Figure 3, middle row). This increase in Bmax is particularly large when within-365 

participant sensory noise ratios are high (lower in each panel) and when the between-participant cue 366 

ratio is more evenly split (left panels). Notably, as this enhancement stems from an increase in the 367 

sensory noise levels of the individual cue comparator (by combining the worse and best cues of different 368 

participants), it does not only affect Bmax, but also the contrast of interest, that is, the combined cues 369 

versus single cue noise levels.  370 

If the between-participant cue ratio proportion is evenly split within the sample (i.e., 50% 𝜎1< 𝜎2), the 371 

inflation of false positive increases. In contrast, if one cue is relatively more precise than the other for 372 

the whole sample (e.g., 100% 𝜎1< 𝜎2), there is no inflation of false positives. However, such a scenario 373 

is typically more likely to occur when one of the cues is considerably more precise than the other, likely 374 

resulting in high within-participant cue ratios, which, in turn, reduce the chances to detect a true 375 
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combination effect. Hence, when reducing the noise ratios of the single cues for all individual observers, 376 

it is more likely to end up with a more evenly split between-participant cue ratio proportion (i.e., more 377 

like 50% 𝜎1< 𝜎2). 378 

 379 

Figure 3: Heatmaps showing how the maximum possible benefit (Bmax) depends on the sensory noise of the best 380 

cue, min(𝜎1, 𝜎2), sensory noise ratio, max(𝜎1, 𝜎2)/min(𝜎1, 𝜎2), the proportion of participants for which one of the two 381 

cues is more precise than the other one, i.e., x% 𝜎1< 𝜎2, as well as the comparator that is chosen for the analysis. 382 

(a) By contrasting sensory noise values of the individually-determined best cue with the combined cue condition, 383 

i.e., min(𝜎1, 𝜎2) vs 𝜎12, the possible benefit remains constant, independently of the proportion of participants for 384 

which cue 1 is more precise than cue 2 (panels left to right are the same). This analysis tests for a true combination 385 

effect. (b) On the contrary, when the group-determined best cue noise is contrasted with the combined cue noise, 386 

i.e., min(𝜎1̂, 𝜎2̂) vs 𝜎12, the maximum possible benefit is enhanced. This enhancement does not, however, reflect 387 

true combination but rather increases the difference between MLE prediction (which stays constant) and the 388 

comparator (group-determined best cue) by inflating sensory noise values in the latter. The effect is stronger when 389 

the population of individuals having cue 1 vs 2 as their best single cue is more mixed (panels towards the left).  390 

 391 

6. Illustration with simulated responses  392 
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To test the effects that the two different analysis approaches have on the chances of obtaining a true 393 

or a false combination effect, we simulated data for a hypothetical cue combination experiment under 394 

a range of conditions. A similar approach has been introduced by Scarfe (2022) recently. Here, we 395 

directly contrasted the outcomes the two methods, ‘using the group-average best cue as cue 396 

comparator’ (section 3a) and ‘using the individually-selected best cue as cue comparator’ (section 3b), 397 

with simulated data from observers who either combined the cues in line with predictions of statistical  398 

optimality (equation 1) or who did not combine the cues but followed the best sensory cue while ignoring 399 

the worse cue (min(𝜎1, 𝜎2) = 𝜎12).  400 

To that end, we simulated responses for a feature discrimination task that used a 2AFC paradigm with 401 

a sampling method of constant stimuli, which has frequently been used by many psychophysical cue 402 

combination studies (Ernst & Banks, 2002; Kingdom & Prins, 2016; Rohde et al., 2016). Simulated 403 

observers responded which of two consecutively presented objects had a larger magnitude, for 404 

instance, was bigger in size. The stimulus feature range was log-transformed and, for comparability, 405 

normalized such that all values fell between -1 (e.g., smaller) and 1 (e.g., bigger). Based on 20 406 

repetitions for each of 14 comparison stimulus levels, we generated responses of the target being 407 

reported to be larger than the reference, for each cue condition (cue1, cue2, both) and each observer.  408 

As can be expected with human participants, simulated observers exhibited lapses, which randomly 409 

affected between 1% and a maximum of 10% of trials. While lapses affect performance, they often lie 410 

outside of the experimenter’s control, and can be influenced by many factors that impact the observer’s 411 

ability to focus on the task (e.g., difficulties focussing on the task, confusing response keys, lack of rest 412 

or increasing fatigue from long sessions). While lower lapse rates (1-3%) can be expected in well-413 

behaved, focussed participants, additional factors such as dual tasks, very long or tiring tasks, or 414 

inclusion of specific clinical or developmental populations can bring about increases in lapses. While it 415 

is difficult to control or directly assess the lapse frequency, researchers cannot assume that observers’ 416 

performance is free from these effects, and it is important to factor such human error into the response 417 

when simulating observers.  418 

A psychometric function of the form  419 

𝛹(𝑥;  𝜇, 𝜎, 𝜆) =  (1 − 𝜆) ∗ 𝐹(𝑥| 𝜇, 𝜎)    equation (6) 420 



18 
 

 
 

was fit to the simulated proportions of responses stating that the stimulus feature was larger in 421 

magnitude (e.g., bigger size; Figure 4). Here, 𝜆 refers to the lapse rate, which was free to vary between 422 

0.01 and 0.2. A larger lapse rate was allowed as researchers often cannot be certain what the true 423 

underlying lapse rate is (Wichmann & Hill, 2001; but see García-Pérez, 2014; Jones et al., 2015; Prins, 424 

2012, 2013; Watson, 2017; Watson & Pelli, 1983; for alternative, adaptive estimation approaches). 425 

𝐹(𝑥| 𝜇, 𝜎) describes the probability of responding that a comparison stimulus was bigger than a 426 

reference stimulus (which is typically of fixed size) as a function of the real comparison stimulus size x, 427 

modelled as cumulative Gaussian: 428 

𝐹(𝑥| 𝜇, 𝜎) =  
1

𝜎√2𝜋
∫ 𝑒

−(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑥

−∞
   equation (7) 429 

Here, 𝜇 refers to the mean of the cumulative Gaussian and describes the psychometric function’s point 430 

of subjective equivalence (e.g., stimulus size of comparison stimulus that is subjectively equivalent to 431 

the size of reference stimulus), while 𝜎 refers to its standard deviation and links to the sensory noise of 432 

the cue.6  433 

 434 

 435 

Figure 4: Example data and fitted psychometric functions of three simulated observers that combined cues 436 

according to equation 1. Different colours and line types represent the three different cue conditions (best single 437 

cue, worst single cue, combined cues). Simulated best cue noise levels and ratios of single cues are indicated left 438 

in each figure. Estimated sensory noise and lapse rate parameters for every cue are given on the right of each 439 

 
6 Note that, the standard deviation relates to a cue’s sensory noise via √2, that is, it relates to half of the variance. 
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figure. All three observers differed in their participant-specific characteristics, with increasing levels of sensory noise 440 

of the best cue and sensory noise ratios from left to right. These are split across different panels in Figure 6.   441 

 442 

We simulated 1000 experiments, each consisting of 30 observers, which is leaning towards the higher 443 

end of sample sizes typically found in psychophysical cue combination experiments (Meijer et al., 2019; 444 

Rohde et al., 2016; Scheller et al., 2020). As outlined above, the probability of detecting cue combination 445 

in psychophysical experiments depends not only on design choices such as the sample size and 446 

analysis cue comparator, but also on further participant-specific characteristics such as lapses and the 447 

maximum possible benefit Bmax, that is, the best cue’s sensory noise level and the within-participant cue 448 

ratio. We therefore simulated all experiments for a range of plausible observer characteristics: 449 

observers differed in their best sensory noise levels between 0.1 and 1.1, with cue noise ratios between 450 

1 (perfectly matched) and 2 (worse cue noise twice as high as best cue noise). These simulations were 451 

run for two scenarios: one scenario in which observers combined both cues optimally, and one in which 452 

observers followed the best sensory cue, i.e., did not combine the cues. For each of the resulting 30,000 453 

simulated experiments (1000 experiments x 3 best sensory noise levels x 5 ratios x 2 combination 454 

scenarios) we applied the two different comparator contrasts: the combined condition was either 455 

compared with the group-determined best cue (equation 2; Figure 6 grey points; see also Figure 2a), 456 

or with the individually-determined best cue (equation 3; Figure 6 black points; see also Figure 2b). In 457 

the former case, we further assumed that the between-participant cue ratio in the sample was either 458 

evenly split (50% 𝜎1< 𝜎2) or increasingly homogenous (75% 𝜎1< 𝜎2; 90% 𝜎1< 𝜎2), as this influences the 459 

degree of alpha error inflation. Section 5 showed that, if all participants express the same relative cue 460 

ratio (100% 𝜎1< 𝜎2) the analysis does not differ from the combined vs individually-determined best cue 461 

contrast, simply because the individually-determined best cue is also the group’s best cue. As sensory 462 

noise values are typically not normally distributed, one-sided Wilcoxon signed rank tests were used to 463 

test for significant decreases in sensory noise in the combined condition compared to the respective 464 

single cue condition. Figure 6 shows the proportion of experiments for which significant cue combination 465 

effects were found under the conditions that either all observers combined the cues according to 466 

statistically optimal predictions (100% combination probability) or no observer combined the cues (0% 467 

combination probability). Note that the a within-participant cue ratio of 1 (equal cue reliabilities) presents 468 
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the best-case scenario in which we can experimentally distinguish between combination and following 469 

the best single cue. 470 

 471 

Figure 6: Each point represents the probability of finding significant cue combination effects in a number of 472 

simulated experiments (nexp = 1000) in which observers (nobs = 30) either combined the two cues according to 473 

statistically optimal predictions (power; top panels) or did not combine the cues but followed the single most reliable 474 

cue (false positives; bottom panels). Hence, the bottom row indicates the proportion of false combination effects, 475 

resulting from measurement noise and analysis approach. Grey and black colors indicate different analysis 476 

contrasts (equations 2, combined vs group-determined best cue and equation 3, combined vs individually-477 

determined best cue, respectively), while different grey line types show scenarios in which 50% (dotted), 75% 478 

(dashed) or 90% (solid) of participants show the same between-participant cue ratio, i.e., 𝜎1< 𝜎2. Horizontal dashed 479 

lines in the upper panels indicate 80% probability of detecting a combination effect, which can be interpreted as a 480 

quantification of power. An increase in sample size enhanced the chances of detecting combination effects (not 481 

shown here; but also see Scarfe & Glennester, 2018; Scarfe, 2022). Horizontal dashed lines in the lower panels 482 

indicate the generally employed upper limit of tolerated alpha error of 5%. 483 

 484 

Comparing the effect of the two different analysis approaches (black and grey lines in Figure 6), our 485 

simulations demonstrate that when observers do combine cues (top row), the probability of finding 486 
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combination effects is larger when the combined cue condition is contrasted with the group-determined 487 

best single cue conditions (equation 2; grey points), compared to the individually-determined best single 488 

cue (equation 3; black points). This, however, is also the case when the simulated observers do not 489 

combine (except in the special case of observers having exactly matched cue reliabilities – bottom left 490 

panel). In other words, even when observers do not combine cues but simply follow the more reliable 491 

cue, the former approach suggests that observers combine as a result of the single cue noise inflation. 492 

This increase in falsely detecting combination effects greatly exceeds the generally accepted alpha 493 

level of 5% and is largest when cue between-participant cue ratio is most evenly split (50% 𝜎1< 𝜎2), with 494 

up to 100% of false positives. The proportion of false positives decreases as the same cue becomes 495 

more reliable across all participants (100% 𝜎1< 𝜎2) and when within-participant cue ratios become more 496 

matched. However, this incredibly high rate of false positives is alarming given that the majority of 497 

published studies employed this type of analysis1. In comparison, the rate of false positives stays well 498 

within the 5% margin when an analysis is used that contrasts the combined condition with the 499 

individually-determined best cue (equation 3).  500 

Beyond the effect that the comparator choice has on the probability of finding true and false combination 501 

effects, our simulations show that the ability to distinguish true combination effects from alternative 502 

models decreases with increasing cue noise ratio and is highest when the individual cues reliabilities 503 

are well matched (cue ratio = 1; see also Scarfe, 2022). This is because the maximum achievable 504 

benefit and hence the possible effect size is largest when cues are matched. Furthermore, the 505 

probability of finding combination is most pronounced within a certain range of sensory noise values, 506 

that is, for a normalized range between 0.2 and 1. This, again, can be explained by a combination of 507 

the maximum possible benefit in noise reduction that can be achieved (Bmax), as well as the enhanced 508 

conflation of sensory noise and measurement noise (e.g., lapse rate estimation) when uncertainty is 509 

high.  510 

Note that the absolute probability of finding a true combination effect further depends on the sample 511 

size and precision (smallest possible measurement noise) that can be achieved by the study (Scarfe, 512 

2022). An effect of measurement noise in the present simulations, for instance, is reflected in an 513 

increased inability to distinguish lapse rates from sensory noise when uncertainty is high. Furthermore, 514 

the statistically optimal cue combination model relies on assumptions that are not always tested by 515 

researchers (for more details, see Ernst, 2012; Rohde et al., 2016; Scarfe, 2022). 516 
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 517 

7. Conclusion and best practice suggestions 518 

Studying how sensory information is integrated within or across multiple senses allows us to better 519 

understand perceptual computations that lie at the foundation of adaptive perception and behaviour. 520 

Specifically, the benefit in perceptual precision, accrued by combining the available sensory information 521 

in a statistically optimal fashion (Ernst & Banks, 2002) has received increasing attention, being termed 522 

nothing less than the “most important hallmark of optimal integration” (Rohde et al., 2016, p. 285).  523 

However, the precise quantification of perceptual precision that is often necessary to measure effects 524 

of such small sizes requires careful consideration. As has been demonstrated recently (Scarfe, 2022), 525 

many (influential) studies that report evidence for cue combination fall short on the ability to statistically 526 

test for such effects and distinguish between cue combination and alternative models, such as 527 

observers following the best sensory cue. While there are multiple participant-specific factors that 528 

cannot be determined in advance, such as the observer’s exact sensory noise ratio or the proportion of 529 

lapses observers will exhibit during a given session, careful study design and the correct choice of 530 

analysis are crucial to achieve maximum credibility of the reported effects.  531 

Firstly, as cue combination necessarily leads to a benefit in perceptual precision when both cues are 532 

present, the crucial criterion that researchers should test for is a decrease in sensory noise (or increase 533 

in precision) in the combined cue condition compared to the best single cue condition. Comparing the 534 

combined sensory noise levels against optimal predictions is not enough, as it does not evidence a 535 

perceptual precision benefit. 536 

Importantly, adding to the design considerations outlined by Scarfe (2022), the present study 537 

demonstrates that the analysis used to test this criterion needs to be revisited, as it suffers from a large 538 

alpha error inflation. Specifically, here we demonstrated that the choice of cue comparator (group-539 

determined best single cue or individually-determined best single cue) has huge implications for 540 

whether a reported combination effect reflects true combination. Only contrasting the combined noise 541 

levels with the individually-determined best cue allows to measure true cue combination. However, the 542 

majority of published cue combination studies1 to date contrasted the combined noise levels with the 543 

group-determined best cue. Here we showed that this method risks a strong inflation of false positives, 544 

with chances of falsely reporting cue combination as large as 100%. Notably, the studies that used this 545 
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comparator were not only more common but also received more citations per year1 than the ones using 546 

the correct cue comparator, which may suggest that they were more influential.  547 

The degree of false positive inflation depends on several participant-specific characteristics: the within-548 

participant cue ratio, the absolute sensory noise levels in the individual cues, as well as the between-549 

participant cue ratio proportion (e.g., ~50% 𝜎2 < 𝜎1). If all participants show higher noise levels in the 550 

same cue, the analyses are equivalent. However, this is rarely the case in cue combination studies, 551 

especially when the cues are approximately matched, which is desirable to achieve larger possible 552 

effect sizes. Therefore, the approach involving the group-determined best (and worst) cue(s) as 553 

comparator is not recommended. Luckily, as researchers we have complete control over the comparator 554 

choice and implementing the correct comparison that allows us to maintain confidence that we are 555 

measuring a true combination effect only requires one extra step. That is, out of the two individual cues, 556 

the best cue for each individual needs to be determined before contrasts are applied.  557 

Based on the above demonstration, we outline several recommendations for researchers that study 558 

how sensory information is integrated using a cue combination approach: 559 

1. Employ an analysis that minimizes the possibility of producing false combination effects. As 560 

true combination necessarily results in the decrease of sensory uncertainty in the combined 561 

cue condition, relative to the individually-determined best cue, the choice of analysis needs to 562 

reflect this (equation 3).  563 

2. Additionally, illustrating combination effects at the individual level is often useful, especially 564 

when it supplements group-level analyses. This provides an estimate about the overall 565 

prevalence and individual degree of combination effects within the group, as well as between-566 

participant variability.  567 

3. Testing whether the precision benefit follows (optimal) MLE predictions should be an additional, 568 

but not an alternative step when aiming to evidence combination/integration of two cues. The 569 

degree of combination can also be quantified as difference between the minimal possible 570 

sensory noise and the empirically measured combined noise level (equation 5). This is because 571 

the MLE prediction provides the maximum possible benefit/minimum possible noise level that 572 

can be measured, taking the observer’s unisensory variances and variance ratio into account. 573 

As such, this combination index may be especially useful if a simple, quantified measure of 574 
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integration degree (relative to what is maximally possible) is needed to contrast between 575 

groups. Note, however, that similar to the contrast with optimal predictions, this measure alone 576 

does not allow to infer whether integration took place, as it is still possible that participants 577 

followed the best single cue. To evidence combination, step 1 needs to be implemented. 578 

4. Seconding previous recommendations (Ernst, 2012; Rohde et al., 2016; Scarfe, 2022) we 579 

remind researchers to carefully consider their design parameters in order to minimize 580 

measurement noise (e.g., maximize number of trial repetitions, select sensible stimulus levels 581 

and a suitable testing range that allows response proportions to plateau, select appropriate 582 

parameter estimation procedure and limits; Kingdom & Prins, 2016; Prins, 2012, 2013) and 583 

maximize power (e.g., define a sample size that takes the maximum benefit relative to the 584 

measurement noise into account, and maximize the possible benefit by matching single cue 585 

noise levels; Rohde et al., 2016; Scarfe, 2022). Sensible stimulus presentation ranges and 586 

hardware-related measurement noise can be best determined in pilot studies. Furthermore, 587 

simulating data can be of great help to provide the researcher with an estimate of analysis-588 

related measurement noise. Notably, the assumptions upon which cue combination models 589 

rest7 are often neglected, however their implications are vital for determining whether cue 590 

combination is present and whether it follows optimal predictions (Scarfe, 2022).  591 

The implications that the comparator choice has on our ability to distinguish cue combination from 592 

alternative strategies is far reaching, and does not only affect planning of future studies, but also 593 

questions the results of published studies that have used the group-determined best and worst cues as 594 

comparators to evidence combination (this includes the authors’ own studies). Our recommendation 595 

therefore extends to researchers of published articles to re-analyse their data using the more 596 

appropriate comparator, that is, the individually-selected best cue, to ascertain that their reported effects 597 

indeed reflect true combination.  598 

Taken together, the present study advocates for a more careful comparator selection and task design 599 

in order to ensure cue combination is tested with maximum power while reducing the inflation of false 600 

positives. Clearly, while some factors that influence our ability to find true combination effects are more 601 

difficult to control or anticipate in advance, such as an observer’s absolute levels of sensory noise for a 602 

 
7 Absence of perceptual bias (Scarfe & Hibbard, 2011) and learning effects throughout the task (Fründ et al., 2011); 

reduced decisional noise (Hillis et al., 2004); Independence of sensory noise (Oruç et al., 2003) 
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given cue, their sensory noise ratio, or expectable lapse rates8, the choice of analysis is a design factor 603 

that is under full researcher control.  604 
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Supplementary information 918 

Estimating parameters of perceptual precision (such as the psychometric function slope) becomes 919 

increasingly uncertain as sensory noise increases (i.e., stimulus discriminability reduces). One can think 920 

of selecting a narrow stimulus range, within which discriminating two stimuli is difficult, resulting in a 921 

shallow psychometric function. Especially when additional parameters, such as the lapse rate, which is 922 

typically unknown to the experimenter, is estimated alongside parameters of interest (slope) the 923 

estimation uncertainty increases. This is because it is unclear whether the variability in responses at 924 

the extreme ends of the range results from reduced perceptual precision (small slope) or from an 925 

increase in attentional lapses. 926 

Notably, while the data-driven estimation of nuisance parameters such as the lapse rate is debated 927 

(Prins, 2012; Treutwein, 1999; Wichmann & Hill, 2001), grossly over- or underestimating this parameter 928 

will almost certainly lead to biases in the parameter estimates of interest (sensory noise). To illustrate 929 

this example, we ran simulations in which observers with different sensory noise levels and different 930 

lapse rates were generated. Sensory noise values were randomly drawn from a truncated normal 931 

distribution centred on values between 0.1 and 1.1 (SD = 0.05). Lapse rates were systematically varied 932 

between 1% and 20% (the latter being less likely, but not impossible) to assess their influence on 933 

sensory noise parameter recoverability. Their data was then fit with psychometric functions to estimate 934 

their sensory noise parameters. For each case, we ran 1000 simulations, each of which generated 35 935 

observers across which recoverability parameters (correlation coefficient r and median bias) were 936 

measured. We further varied the range of possible lapse rate values that our parameter estimation 937 

procedure allowed to fit (i.e., lapse rate constrain). These simulations showed that, firstly, larger sensory 938 

noise values were less well recovered than lower sensory noise values (see Figure S1). In other words, 939 

the less precise the cue, the less reliably could it be recovered. Secondly, unsurprisingly, the larger the 940 

lapse rate the more difficult it was to recover the simulated sensory noise parameters. Thirdly, median 941 

bias between the simulated and estimated sensory noise levels increased, depending on the sensory 942 

noise value (higher noise values = larger bias). The directionality and degree of this bias further depends 943 

on the limits within which the lapse rate is allowed to vary. Across all cases, parameter estimation was 944 

more reliable (higher recoverability) and less biased when the underlying psychometric function was 945 

steeper, i.e., if it plateaued at the extremes. Furthermore, even constraining the lapse rate to vary within 946 

a limited range can induce bias in the estimation of sensory noise parameters. Hence, researchers 947 
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need to decide whether they constrain or fix the lapse rate, keeping possible bias in mind, or estimate 948 

lapse rates in psychophysical tasks (Prins, 2012; Treutwein, 1999; Wichmann & Hill, 2001). In either 949 

case, with increasing uncertainty, lapses and sensory noise becomes less distinguishable from each 950 

other, which would argue against increasing the sensory noise in the best single cue, even if maximum 951 

possible benefits are comparably large. Instead, it argues for matching cue reliabilities in the individual 952 

cues as much as possible. 953 

954 

Figure S1: Sensory noise level recovery parameters for different simulated lapse rates and lapse estimation limits. 955 

Each figure shows how well different noise levels can be recovered depending on the degree of lapses (between 956 

1-20% of trials). Correlation coefficient r (upper row) and the median bias (lower row) were measured for a set of 957 

simulated (𝜎𝑝𝑟𝑒𝑑) and recovered (𝜎𝑚𝑒𝑎𝑠) noise levels across 1000 experiments with 35 observers each. Simulated 958 

sensory noise levels were drawn randomly from a truncated normal distribution centred on values between 0.1 and 959 

1.1 (SD = 0.05). Shaded bands indicate 95% confidence intervals. Different panels in each row indicate the 960 

correlation and median bias when different levels of lapses are allowed in the fitting procedure. Lower simulated 961 

sensory noise values show higher recoverability, while increasing sensory noise levels are more often conflated 962 

with estimated lapse rates, depending both on the degree of lapses as well as the maximum degree of lapses 963 

allowed in the fitting procedure. The effect of absolute sensory noise value increases with increasing fitting limits. 964 


