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Efficient decision-making requires accounting for sources of uncertainty
(noise, or variability). Many studies have shown how the nervous system
is able to account for perceptual uncertainty (noise, variability) that arises
from limitations in its own abilities to encode perceptual stimuli. However,
many other sources of uncertainty exist, reflecting for example variability
in the behaviour of other agents or physical processes. Here we review pre-
vious studies on decision making under uncertainty as a function of the
different types of uncertainty that the nervous system encounters, showing
that noise that is intrinsic to the perceptual system can often be accounted
for near-optimally (i.e. not statistically different from optimally), whereas
accounting for other types of uncertainty can be much more challenging.
As an example, we present a study in which participants made decisions
about multisensory stimuli with both intrinsic (perceptual) and extrinsic
(environmental) uncertainty and show that the nervous system accounts
for these differently when making decisions: they account for internal uncer-
tainty but under-account for external. Human perceptual systems may be
well equipped to account for intrinsic (perceptual) uncertainty because, in
principle, they have access to this. Accounting for external uncertainty is
more challenging because this uncertainty must be learned.

This article is part of the theme issue ‘Decision and control processes in
multisensory perception’.
1. Background
Choosing the best course of action depends on evaluating the evidence in favour
of different options. A problem for any decision-maker is the quality of the data
available. Major limitations to data quality come from the bias (systematic error)
and uncertainty (random error, or noise or variability). An observerwhose percep-
tion of the approach times of oncoming traffic is strongly biased, such that they
systematically over-rate the available time to cross the road, is in danger. So is
an observer whose perception is very uncertain: the high variability of their judg-
ments means that, on any given occasion, there is a good chance of the percept
deviating markedly from the true state.

An effective decision-maker should strive to minimize bias and uncertainty
in the data on which they base their decisions. Here, we particularly consider
the problem of uncertainty (noise). To preview our argument: (i) the data
available for decision-making can include uncertainty (variability) for several
reasons, and there is a key difference between intrinsic and extrinsic uncertainty;
(ii) perceptual systems can be remarkably efficient at taking uncertainty into
account, particularly via reliability-weighed combination of estimates, a noise-
minimizing strategy; (iii) by contrast, people typically do not make such efficient
decisions in taskswith uncertainty that is not perceptual; (iv) existing studies have
exploredways inwhich perceptual and other tasks differ but have not clearly sep-
arated out the type of uncertainty alone as a factor; (v) we consider the possibility
that ‘extrinsic’ uncertainty, of the kind common to non-perceptual decision pro-
blems, is more difficult to account for than ‘intrinsic’ uncertainty. To test this
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idea, we assess how people perform on a new spatial localiz-
ation task, in which all decisions are made within the
perceptual domain, and all use the same stimuli, but we
manipulate the degree of uncertainty from intrinsic (percep-
tual) versus extrinsic (environmental) sources; and (vi) our
finding is that perceptual judgments are indeed less effective
in taking extrinsic uncertainty into account than intrinsic
uncertainty. This illustrates that not all kinds of uncertainty
are treated in the same way: internal uncertainty can in prin-
ciple be accessible to perceptual systems, while external
uncertainty needs to be learned.

(a) Sources of uncertainty during perceptual decision
making

Why are estimates uncertain (noisy, variable, limited in pre-
cision)? In the perceptual domain, limitations in sensory
apparatus and computational imprecisions in the brain mean
that sensory signals are subject to noise [1]. In perception, this
noise becomes particularly evident when fine discriminations
are required: a personmay struggle to correctly select the biggest
of two similarly sized apples, or the shortest of two similarly
long supermarket lines. This uncertainty greatly increases
when conditions for the sensory apparatus are degraded—for
example, for a person choosing an apple in near darkness, or jud-
ging the supermarket line using eyes affected by progressive
vision loss.We term this kind of uncertainty, related tovariability
(noise) in the sensory signal, intrinsic—in the sense that it is
internal to the workings of a particular sensory system. We con-
sider our example environmental (e.g. dark) or medical (e.g.
vision loss) factors also to contribute to intrinsic uncertainty, as
they lead to high variability (noise) in a particular sensory
system. An ideal observer (or a different organism, or robot)
equippedwith better light-gathering apparatuswould be subject
to less noise during the nocturnal apple-selecting task.1 Intrinsic
uncertainty reflects the variability (noise) within a particular
sensory system, not variability (noise) in the environment.

By contrast, extrinsic uncertainty arises from variability
in an environment, not in a sensory system. An example
would be the variability in different lines’ speeds at supermar-
ket checkouts owing to the differing behaviours of individual
cashiers. Cashiers’ speeds may vary as a function of their
visuo-motor speed, their propensity to take time talking to cus-
tomers, their familiarity with unusual items that otherwise
need to be looked up, and so on. Excluding (in this example)
reliable instantaneous perceptual cues to all the determinants
of how fast a cashier is, the ideal observer could only establish
relative speeds by observing the environment for some time.
This processmay also be limited by variability in the observer’s
perceptual processes—but crucially, even an ideal observer
with negligible errors or computational limitations affecting
these processes would still be subject to this externally deter-
mined uncertainty, and would need to spend time sampling
the environment to build up an estimate of this source of varia-
bility—unless they had evolved, or been programmed to, have
this information.

To sum up, we define intrinsic uncertainty as straight-
forwardly perceptual, in that it reflects the limitations of
the perceptual process. Perception always comes with some
uncertainty [1], but this uncertainty is particularly evident
when making a fine discrimination and/or in degraded or sub-
ideal conditions. By contrast, extrinsic uncertainty is outside of
the perceptual process and reflects variability in the world
itself. Examples include patterns of stochastic behaviour of
agents or physical processes—e.g. the spread of droplets from a
flow of water, the shooting accuracy of an archer, the probable
waiting time for a bus. The statistics of these kinds of externally
determined distributions can be learned, but the ideal observer
needs to collect observations to learn them.2 Internal uncertainty
within a perceptual process itself could, in principle, be much
more readily available to the perceiver.

(b) Efficient mitigation of intrinsic uncertainty via
combination of estimates during perceptual tasks

A useful strategy for reducing uncertainty is combining a
perceptual estimate either with another estimate of the same
property [2,3], or with prior knowledge of the statistics of
the environment [4]. This has the effect of averaging-out
random noise [2]. In the perceptual domain, this process has
been studied in sensory cue combination tasks, which measure
people’s abilities to reduce the uncertainty of a sensory estimate
by combining it with other available estimates [5]. In a classic
study [6], people judged which of two bars was taller, using
vision and/or touch. The ideal observer would obtain predict-
able reductions in their uncertainty given both estimates
together versus either alone by reliability-weighted aver-
aging—in which each estimate is weighted in inverse
proportion to its uncertainty [5]. Participants followed this ‘opti-
mal’ strategy: they obtained the theoretically maximum
uncertainty reduction when given the opportunity to combine
cues, and they re-weighted (changed their relative reliance on)
the visual cue to height as it was made more uncertain by
addition of stereo noise [6]. Similarly, participants use prior stat-
istical information to reduce their perceptual uncertainty, for
example predicting visually noisy trajectories based on
statistical distributions learned over the course of the experiment
[4]. Observers often near-optimally combine noisy sensory esti-
mates with each other [6–9] and with prior distributions [4,10–
12], although there are also cases of suboptimal combination
[13–15]. Perceptual cue combination is already evident in
single neurons of early sensory areas during multisensory
tasks [16], and can also be detected using functional magnetic
reasonance imaging (fMRI) in humans, in sensory areas (even
during passing viewing, in the case of combination of visual
cues to depth) [17–19] and across a whole cortical hierarchy
up to the frontal lobe during perceptual decision tasks [20–22].

For this kind of reliability-weighting towork, the perceptual
system must correctly account for its own uncertainty. For
example, it must adjust the weighting given to a visual cue to
bar height, versus a haptic one, in line with more or less
stereo noise being added [6]. Similarly, during visual-auditory
localization [7], the observer must adjust the weighting given
to a visual cue to location, versus an auditory one, in line
with progressive visual blurring. How uncertainty-weighted
averaging is implemented at a cells-and-circuits level is
still being established [23–25], but it is clear that uncertainty
intrinsic to perceptual estimates can be represented implicitly
by population responses, because elementary perceptual prop-
erties tend to be represented by populations of tuned cells.
Thus, a very precise estimate of a line’s orientation might
strongly engage a relatively small population of cells tuned to
a specific orientation,while anuncertain estimate of orientation,
e.g. in a more blurred stimulus, would more weakly engage a
broader population. The distribution of population responses
can therefore reflect the level of intrinsic uncertainty. Consistent
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with this, widths of neuronal probability distributions
decoded from participants’ fMRI activity are predictive of
their perceptual decisions [26,27].

In summary, perceptual tasks show abilities to account
effectively for perceptual uncertainty. When sensory estimates
are combined [6–9], all the uncertainty is within the perceptual
system itself (tasks combining sensory information and priors
[4,10–12] have the additional challenge of learning and repre-
senting the prior). It is not obvious that perceptual systems
should necessarily accurately read out or represent the variabil-
ities in their own estimates, but the evidence from cue
combination tasks [6–8] suggests that this must be the case.
Considering how perceptual information is represented
by neuronal populations [23–27] also provides plausible
mechanisms for representing and reading out this variability
information within the perceptual system itself, without the
need to additionally learn about this variability.

(c) Less efficient mitigation of uncertainty during non-
perceptual decision tasks

The literature on economic decision making under uncertainty
stands in stark contrast to these findings from perceptual tasks,
documenting many inefficient and seemingly sub-optimal
patterns of decision making [28–31]. By ‘classical’ decision
making,wemean decisions about verbally or symbolically pre-
sented options. One example of this type of problem is a lottery,
such as ‘would you rather gain $3000 for sure or have an 80%
chance of gaining $4000?’ [29]. A second is a decision informed
bya base rate (similar to a prior in perceptual tasks), for example:
how likely it is that a blue versus green taxi was responsible for
a traffic accident, knowing that 85%of taxis in the city are green
and 15% blue, and that the witness (who judged that it was
blue) is only correct at making this discrimination 80% of the
time? (the ‘taxicab problem’ [30]). A third kind is a multiple-
factor combination judgement, such as deciding how toxic a
fictitious bug is likely to be based on multiple predictive cues
(e.g. leg length, colour) [31].

Perhaps most pertinent to the questions asked in this
study is the issue of weighting of experience versus externally
provided statistics. A veteran physician will have accumu-
lated years of experience of diagnosing common diseases,
but may have no experience with very rare diseases. A poss-
ible problem is that they may rely too heavily on their
experience, and under-value the potential of diseases not pre-
viously diagnosed, possibly owing to the representativeness
heuristic [32]. (This is in contrast to a more junior physician
who might over-represent the possibility of diseases that
are very rare, an example of base rate neglect [33].) Phrased
in terms of Bayesian inference, the experienced diagnostician
might put too little weight on a likelihood of a disease that is
verbally/symbolically presented to them, instead putting too
much weight on their prior experience. Formally, this can also
be used to describe the cause of stereotyping [34].

Tasks and situations like these are non-perceptual in the
sense that the information (e.g. words, numbers, bug features,
disease prevalences) is symbolic and not subject to relevant
perceptual uncertainty. They can also differ from the percep-
tual tasks described above in the specific information
integration problem (in the cue combination examples and in
the taxi-cab and bug problems, multiplying likelihoods, prob-
ability distributions or probabilities; in the lottery example,
combining posterior probability and value). Our aim here is
to focus specifically on the source and representation of uncer-
tainty, and to bring these kinds of problems closer, leading us to
introduce a novel experimental task in which every aspect
of the task except for the type of uncertainty is matched. In
order to reach that point, we first review previous studies in
which aspects of perceptual and non-perceptual decision
tasks have been matched and compared in significant ways.
(d) Task differences and uncertainty differences
Studies have directly compared people’s abilities to deal with
internal estimates of uncertainty on the one hand, and explicitly
stated probability information on the other. Some studies
measured participants’ visuomotor precision at a speeded
pointing task [35,36], allowing them to calibrate the visual
stimuli so that the same verbal lottery could equivalently be
presented as a visuo-motor one. In the verbal task, participants
had to choosewhich of two numerically expressed probabilistic
scenarios they would prefer (of the general type x% chance of
winning A versus y% chance of winning B), while in the
visuo-motor task, they made equivalent decisions by choosing
which of two visual targets they would prefer to attempt to
hit for their respective rewards. One study found different
biases towards risk-seeking and different weighting of prob-
ability and value across these tasks [35]; another found
broadly comparable performance [36]. This general approach
compares intrinsic (visuo-motor) and extrinsic (stochastic)
uncertainty, but there are other differences in the two task
types: visuo-motor uncertainty is presented perceptually by a
bar width, while extrinsic (stochastic) uncertainty is given via
the classical numeric (symbolic) route. Therefore, differences
in behaviour may depend in part on the origin and nature of
the uncertainty (internal versus external) and in part on the
manner of presentation (perceptual versus symbolic).

A studywhollywithin the perceptual domainmanipulated
an array of oriented gratings in two ways [37]: by changes in
the stimulus contrast, and changes in the variability of orien-
tations across the different gratings in the array. Expressing
this in our framework, reducing contrast increases intrinsic
(perceptual) uncertainty, while increasing variability increases
the difficulty of the information integration problem of cor-
rectly averaging together disparate estimates. This study did
not have ‘extrinsic’ uncertainty (nothing is stochastic: an ideal
observer without limitations in perceptual precision or compu-
tational abilities could deal with both the contrast and the
variability manipulations), but is related by the authors to
cognitive decision-making in an interesting way. They found
that participants took contrast-related (intrinsic) uncertainty
near-optimally into account, but failed to do so for vari-
ability-related (integration-demanding) uncertainty, and were
well described by a model blind to this source of noise. The
authors propose that the ‘optimality gap’ in perceptual
versus classical cognitive decision tasks may be explained
in part by a blindness to noise introduced during the inte-
gration process that combines multiple information sources.
The argument is that even perceptually presented estimates
(low-contrast grating orientations), when combined in a non-
standard way for the sensory system (averaging multiple
gratings in an array), become subject to cognitive-like decision
errors. Presumably, the contrast is between this type of novel
averaging and the highly familiar averaging during cue
combination where multiple sensory cues are associated with
a single redundant property, such as size [6] or location [7].
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This study interestingly bridges perceptual uncertainty and the
integration/decision process, suggesting a privileged role for
intrinsic (perceptual) uncertainty and a relative blindness to
noise that affects a computational (averaging) process.

A recent study took a different approach to comparing how
people presented with cognitive inference tasks approach the
sort of precision weighting of estimates common in perceptual
cue combination [38]. Participants performed three different
cognitive decision tasks that require combining prior infor-
mation with new data, and a model-based analysis was used
to categorize them according to the extent to which they
followed different principles underlying optimal inference.
Just over half of participants appreciated the need to consider
the prior as well as the data, but only a quarter appreciated
the need to weight them according to their uncertainties.
While there is no direct comparison with the perceptual
domains within this study, and perceptual studies rarely cat-
egorize individual subjects in this way (though see [39]), this
very widespread blindness to uncertainty weighting during
cognitive tasks is at odds with its usual strong implementation
during perceptual tasks [4,6–12].

In summary, while perceptual decision making in the face
of perceptual (intrinsic) uncertainty is often highly efficient in
dealing with this uncertainty [4,6–12], this is not typically
seen in classical or cognitive decision making [28–31,35,38].
A crucial question is to what extent different systems and
representations underlie decision making in these domains.
However, these domains differ across many dimensions.
Examples of ways in which studies have explored these differ-
ences include whether probabilistic information is presented
perceptually or symbolically [35,36], how much uncertainty
is at a perceptual versus at an integration stage [37], and
which models best explain precision-weighting behaviour
during cognitive tasks [38].

Behaviour during decision-making under uncertainty may
differ for many of these and other reasons, but here we return
to the key distinction introduced at the start: the source and
nature of the uncertainty itself. It has been widely appreciated
that internal uncertainty, owing to variabilitywithin the percep-
tual system [1], and potentially amenable to being read out by
the system itself [23–27], has advantages compared with exter-
nal uncertainty, which depends on stochastic events outside of
the observer. It has also been appreciated that a privileged
access to internal uncertainty may underlie many perceptual-
cognitive task differences. However, tasks probing these differ-
ences tend not to allow for a clean interpretation of the role of
type of uncertainty alone in judgments—since these also pre-
sent the information in different ways [35,36], or do not
compare these two types of uncertainty [37,38].
(e) Explaining task differences: the present study
It may be that different systems and representations underlie
decision making across perceptual and cognitive domains
and that the relative engagement of these depends on a range
of task, informational and perceptual parameters. However,
herewe consider one crucial factor that has not been clearly dis-
tinguished and tested: the nature of the uncertainty involved,
intrinsic versus extrinsic.

In the present study, we directly compare abilities to
account for intrinsic versus extrinsic uncertainty during a
perceptual decision-making task. Crucially, the task and even
the stimuli are exactly matched across conditions, so that
uncertainty is signalled in the same way (via spread of dots),
anddecisions and responses aremade about the same property
(location) and entered in the same way (clicking to indicate a
screen location). We use a multisensory localization task, in
which visual (dot cloud) and auditory (white noise on a co-
localized multi-speaker setup) provide redundant cues to the
property to be estimated: location. We draw the dot clouds
such that we calibrate the amount of noise that is intrinsic
(reflecting sensory imprecision at determining the centre of
the cloud3) versus extrinsic (reflecting unreliability of the
cloud centre as a guide to the target location). The colours of
the dot clouds, together with a cover story (that they are
guesses by two different players) are the cue to which levels
of intrinsic and extrinsic noise underly a given trial. Since
intrinsic uncertainty is available to the perceptual system
itself, while extrinsic must be learned with experience, we pre-
dict that decision-making in the intrinsic case will show better
following of signal reliabilities.

( f ) Preview of findings
We directly compared abilities to account for intrinsic versus
extrinsic uncertainty during a perceptual decision-making
task. Our main finding was near-optimal weighting of
sensory estimates when uncertainty was only intrinsic, but
mis-weighting of estimates when extrinsic uncertainty was
added. Specifically, participants over-relied on an extrinsically
uncertain signal, suggesting that they are to some degree
‘blind’ to this source of uncertainty. This illustrates that not
all kinds of uncertainty are treated in the same way: internal
uncertainty may be accessible to the perceptual system, while
external uncertainty needs to be learned.
2. Methods
Thirty participants (26 female, min/median/max age 18/24/34
years, age information for one participant was lost) completed
a series of trials where they used intrinsic+extrinsic visual cues,
intrinsic-only visual cues and intrinsic-only auditory cues to esti-
mate the location of a hidden target on a projector screen.

Participants were recruited from a combination of under-
graduate students in the Psychology department and social
media, and were compensated for their time (£10 per hour plus
performance bonus). The only restrictionswere corrected or uncor-
rected normal vision and normal hearing. Participants were fully
briefed about the purpose of the experiment and gave informed
consent, with ethical approval given by Durham Psychology
department.

Participants were placed 140 cm in front of a projector screen
(width 235 cm, height 131 cm), with all visual stimuli projected
onto it (Optoma GT1080E). Behind the screen were placed nine
speakers (Visaton SC 5.9) at a separation of 2.5 visual degrees.

As a cover story, participants were told that they were taking
part in a task similar to a fairground game, where they had to
find a hidden object using visual cues of previous players, possibly
together with the rustling sound made by the person placing
the hidden object (see the electronic supplementary material for
the full instructions). For the two types of visual stimuli (intrin-
sic-only and intrinsic+extrinsic, see below) participants were told
the cues were guesses by two different individual players,
‘Rodger’ and ‘June’, signalled by different coloured dots (blue or
orange). The exact instructions given to participants are included
in the electronic supplementary material.

The experiment began with a visual cue calibration block
where participants estimated the location of a hidden target



three cues: two visual, one auditory(a)

(b)

(c)

single cue trials

double cue trials

100 ms
100 ms

100 ms

100 ms
100 ms

100 ms
100 ms

100 ms

400 ms

400 ms

adjust response bar
(no limit)

adjust response bar
(no limit)

feedback (no limit)

feedback
(no limit, only for
congruent trials)

or

z ~ N(0, σE
2)

intrinsic-only
visual cue

intrinsic + extrinsic
visual cue

intrinsic-only
audio cue

Figure 1. Schematics of experiment. (a) Subjects were presented with three different types of cues: intrinsic-only visual, intrinsic+extrinsic visual, intrinsic-only
auditory. The total variance of the intrinsic+extrinsic cue (blue) was matched to the intrinsic only visual cue (orange) by adding noise to the mean of the four dots.
(b) Subjects on some trials were presented with single cue stimuli of either the visual or auditory cue. Dots were presented sequentially, while the auditory cue was
continuous for 400 ms. Feedback was provided for all single cue trials. (c) For on other trials, subjects could be presented with two cues (visual and auditory). The
cues were identical to the single cue trials, but feedback was only provided on trials where visual and auditory cues were congruent (i.e. from the same location).

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220349

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 S

ep
te

m
be

r 
20

23
 

using low or high variance intrinsic-only visual cues (four-dot
clouds, each dot shown in succession for 100 ms, generated by
shifting and scaling the four dot centres drawn from a standard
normal distribution so that the mean was exactly the true location,
and the standard deviation (s.d.) was fixed at 0.05 or 0.2, respect-
ively; stimulus parameters are defined as proportions of total
screen width such that zero maps to the left of the screen and
one to the right). There were 90 interleaved trials for each cue (10
repeats for nine test locations; approximately evenly spaced
points between 0.37 and 0.63). We interpret dot clouds generated
in this way as being corrupted only by intrinsic noise as variability
in location estimatesmade using these cues is owing to noise that is
intrinsic to the observer, such as sensory noise. Put differently, an
ideal observer who is free from sensory noise, computational
imprecision, memory imperfections, response noise, etc. could
provide a perfect estimate on every trial (figure 1a).

The purpose of the initial visual cue calibration block
was to measure perceptual variance using each of the low and
high variance intrinsic-only visual cues (s2

L and s2
H , respectively)

so that the difference in variance using each of the two cues
(s2

E ¼ s2
H � s2

L) could be used as the variance of the extrinsic
noise distribution. The extrinsic noise distribution was used to
generate random shifts (zi � N(0,s2

E), where zi is independently
drawn for every appearance of each intrinsic+extrinsic sensory
cue) of all dots in a cloud (same shift for each dot in a single
cloud, or equivalently, only one zi per trial) away from the true
hidden location. For the remainder of the experiment, extrinsic
noise generated in this way was only added to the low intrin-
sic-only cue to create a single intrinsic+extrinsic visual cue.
Adding noise in this way, with the level of noise calibrated indi-
vidually for each participant, should lead to participants being
equally variable using the intrinsic+extrinsic visual cue and the
high intrinsic-only visual cue (referred to hereafter as the intrin-
sic-only visual cue). Indeed, that was our intention to allow for a
direct comparison of the weight placed on each cue.

The visual cue calibration block was followed by the audio cue
training block, where participants used an intrinsic-only auditory
cue to estimate the location of the hidden object. The intrinsic-only
auditory cue was a 400 ms burst of white noise from one of nine
speakers located behind the projector screen presenting the dot
clouds. The locations corresponded to the locations used in the
calibration block and we tested each location 10 times for a total
of 90 interleaved trials in this block. We say this auditory cue is
only intrinsically uncertain as an ideal observer, who perfectly
localizes sounds, would choose the exact location of the hidden
object on every trial. Thus, variability in the responses is intrinsic
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to the observer, again generated by factors such as sensory noise,
computational imprecision and response noise.

The audio cue training block was followed by the test block. In
the test block of the experiment, participants used either the intrin-
sic+extrinsic visual cue, intrinsic-only visual cue, or an intrinsic-
only auditory cue alone to estimate the hidden object location
(single cue trials; figure 1b), or one of the visual cues paired with
the auditory cue (double cue trials; figure 1c). In total, there were
405 single cue trials (figure 1b) in the test block, made up of 15
repeats of each location used in the calibration block for each
single cue (intrinsic+extrinsic visual cue, intrinsic-only visual cue,
and intrinsic-only auditory cue). The single cue trials were inter-
leaved with congruent and incongruent double cue trials
(figure 1c). The intrinsic-only and intrinsic+extrinsic trial types
were randomly interleaved. In congruent double cue trials,
each visual cue could be presented simultaneously with the audi-
tory cue with both cues corresponding to the same hidden
location. There were 270 congruent double cue trials made up
of 15 repeats of each location used in the calibration block for each
audio-visual cue pairing. Incongruent double cue trials were like
the congruent cue trials, with each visual cue being presented sim-
ultaneously with the auditory cue, except that in these trials, rather
than indicating the same location, these cueswere in conflict, allow-
ing us to estimate the amount of weight that participants placed on
each visual cue when paired with the audio cue. There were 400
incongruent double cue trials, made up of 10 repeats of all combi-
nations of intermittent calibration locations (0.37, 0.43, 0.5, 0.57,
and 0.63) for each audio-visual cue pairing.

Owing to an error in the experimental code for the incongruent
conditions of the test block, only stimuli in the left hemispherewere
presented. To ensure there were no left-right biases which could
affect our results we compared variable error in left versus right
hemisphere for the intrinsic-only, as well as intrinsic+external, con-
gruent conditions and found no significant difference (Wilcoxon
signed-rank test, p = 0.8555, median difference =−0.0037 for con-
gruent intrinsic only, p = 0.8555, median difference = 0.0011 for
congruent intrinsic plus extrinsic). Encouraged by this we contin-
ued with the originally planned analysis (a post-hoc analysis for
the incongruent data that allowed the central tendency bias to be
shifted away from the screen centre found no differences, see
the electronic supplementary material).

Participants received feedback on every trial in the visual cue
calibration block, the audio cue training block, and on single cue
and congruent double cue trials in the test block. Feedback consisted
of a green circle or square that indicated the location of the hidden
object, presentation of all dots from the dot cloud simultaneously on
any trial involving a visual cue, and a score out of 1000. Feedback
showing the object location alongside all four dots was the means
by which participants could, in principle, learn the magnitude of
the extrinsic noise on intrinsic+extrinsic trials (noting that two
different signals, shown by differently coloured dots, indicated
two individual named ‘players’—see participant instructions
above and in the electronic supplementary material).

Scores followed a squared error loss function so that the score
reduced quadratically with increasing distance from the target
until it reached zero. The function was scaled so that the function
would reach 0 points at a distance from the target of 10% of the
screen width (0.1). With this modification, participants only score
if the absolute difference between the hidden and guessed
locations is less than 0.1. This may seem small, but as the exper-
iment was completed on a projector screen of width 190 cm,
this means participants only received points if their guess was
within 19 cm of the true location on the screen. The formula
for calculating the score was:

s ¼ 1000(1� ð(h� g)=0:1Þ2),

where s is the score, h is the hidden location and g is the guessed
location.
(a) Calculating perceptual variance
During the experiment, we calculated variance using each of the
low and high variance intrinsic-only visual cues in the calibration
block as the standard deviation of all errors (response–target
location). These values (s2

L and s2
H) were used to define the

variance of the extrinsic noise individually for each participant
(s2

E ¼ s2
H � s2

L) that was added to the low intrinsic-only visual
cue to create the intrinsic+extrinsic visual cue. This was calculated
online in the experiment immediately following the calibration
block so that test trials could be generated. As mentioned above,
adding extrinsic noise in this way should lead to equal variance
when estimating the location of the hidden object using either
the intrinsic+extrinsic cue or the intrinsic-only (high noise) cue in
the test block of the experiment.

Since collecting these data,we have become aware of an impor-
tant issue with variance estimates from data with continuous
responses, such as those here: a frequent finding of central ten-
dency biases [41–43], where participants bias their responses
towards the middle of the set of presented stimuli. Such biases
lead to an under-estimation of variable error. We have recently
described a method that recovers corrected estimates of variable
error [44] in this situation. As described in the electronic sup-
plementary material and [44], we apply this method to
recovering correct variable errors in the present dataset. Unfortu-
nately, the variance calculations that were done online to
calibrate stimuli within the experiment itself did not use this cor-
rection, and as a result we did not match variable error using the
intrinsic-only and intrinsic+extrinsic visual cues in the test block
as intended. Matching the conditions would allow us to have a
simple non-model based comparison, and while the difference in
variance makes the two conditions a little less comparable than
intended, it does not prevent us from comparing the extent to
which participants weighted stimuli appropriately in response to
the two kinds of uncertainty using our model-based analysis. In
short, given the corrected uni-modal variances it is straightforward
to calculate the expected visual weighting and compare to the
empirical measured weight.

(b) Summary and predictions
In summary, we asked participants to localize a hidden object
using visual (dot-cloud) and/or auditory (white noise) cues.
The object’s location was uncertain because of either only intrin-
sic noise (visual or auditory), or because of extrinsic as well as
intrinsic noise. Extrinsic noise was implemented as an additional
offset of cue dots versus the true location. Through feedback,
participants had an opportunity to observe and learn about the
level of this extrinsic noise.

Using trials with minor offsets in cue positions, we measured
the relative weighting for (reliance on) visual versus auditory
cues during perceptual judgements. We predicted that, in line
with previous sensory cue combination studies [6–9], partici-
pants would not weight the visual cue with only intrinsic noise
differently to the optimal (reliability-weighted) prediction.
We predicted that, in contrast, participants would overweight
the intrinsic+extrinsic cue, as they would be less sensitive to
the added extrinsic uncertainty.

All stimuli, data and code are available at https://osf.io/
6paq9/.
3. Results
(a) Participants overweight the visual cue with extrinsic

uncertainty
We used estimates of variable error using the intrinsic-only,
intrinsic+extrinsic and auditory cues alone in the test block

https://osf.io/6paq9/
https://osf.io/6paq9/
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(sI, sIE and sA) to calculate the optimal, reliability based,
weight that participants should place on each cue in a pair.
The formulas we used to calculate the optimal weight to
place on the intrinsic-only cue (wI) and the intrinsic+extrinsic
cue (wIE) when either cue is paired with the auditory cue are
given below.

wI ¼ s2
A

s2
I þ s2

A
wIE ¼ s2

A

s2
IE þ s2

A
:

This formulation is reliant on small discrepancies between
visual and auditory stimuli (less than 10 visual degrees), for
large discrepancies subjects might instead rely on a causal
inference model [40,45].

The empirical weights were determined by modelling
responses to the incongruent trials as

r ¼ (1� ŵP)(ŵVxV þ ŵAxA)þ 0:5ŵP þ e,

where ŵP estimates the strength of the central tendency bias
(for this cue pairing), ŵV estimates the weight placed on
the visual cue (the intrinsic-only or intrinsic+extrinsic cue:
ŵI or ŵIE), ŵA ¼ (1� ŵV) estimates the weight placed on
the auditory cue, xv is the centroid of the dot cloud (the
same as the visual cue source location for the intrinsic-only
cue but not for the intrinsic+extrinsic cue), xa is the source
location of the auditory cue, and e � N(0,s2

n) is a noise term.
To allow for the fact that we assume subjects receive a noisy

(uncertain) input, the perceptual cues had noise with variance
of s2

V and s2
A, with ŵV ¼ s2

A=ðs2
A þ s2

VÞ. A participant with a
veridical estimate of their own relative perceptual uncertainties
would thus correctly set their variances based on these. For a
linear model this has no effect on the mean estimates, but can
affect estimates for more complicated models.

We fitted this model separately for each participant to all
conflict trial responses for combinations of the intrinsic-only
and auditory cue, and intrinsic+extrinsic and auditory cue
separately. The model was fitted using JAGS [46] via the
MATLAB-to-JAGS interface matjags.m to estimate posterior
probability distributions for the free parameters ŵP, ŵV , andsn.

We ran three independent chains, discarding the first 1000
samples of each chain as burn-in, and recording 4000 samples
after the burn-in period, thinned by recording only every fifth
sample. Both fitted weights (ŵP and ŵV) were initialized at
0.5 in all chains. The standard deviation of the noise (sn)
was initialized at 0.01. The priors on wV and wp were uniform
distributions between 0 and 1. The prior on sn was a uniform
distribution between 0.001 and 0.2. The final parameter esti-
mates were taken as the mean of the expected values for
each chain.

Figure 2a shows that the weight participants placed on the
intrinsic-only cue relative to the auditory cue is positively cor-
related with the optimal prediction (r ¼ 0:536, p ¼ 0:002),
suggesting participants weight the cues according to their
reliabilities. Figure 2d shows that empirical and optimal
weights do not differ significantly (t29 ¼ �1:74, p ¼ 0:092),
although the Bayes factor (BF) in favour of the null is approxi-
mately 1, suggesting both the null and alternative hypotheses
are equally good explanations of the data (BF01 = 1.34).

Figure 2b shows that the weight participants placed
on the intrinsic+extrinsic cue relative to the auditory cue
is also positively correlated with the optimal prediction
(r ¼ 0:524, p ¼ 0:003), again suggesting participants weight
the cues according to their reliabilities. However, most
points are above the identity line (empirical weight greater
than optimal). Figure 2e shows that mean empirical and opti-
mal weights differ significantly (t29 ¼ �5:14, p , 0:001),
with participants overweighting the intrinsic+extrinsic
visual cue. The BF in favour of the alternative suggests
there is extreme evidence for a difference between empirical
and optimal weights (BF10 ¼ 1291:3).
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We hypothesised that participants would overweight
the intrinsic+extrinsic cue as they would be insensitive to the
added extrinsic uncertainty. If participants are completely
insensitive to the extrinsic uncertainty, they should weight the
intrinsic+extrinsic cue according to the variability of their
responses when using the low intrinsic-only cue measured
in the calibration block. We call the use of this insensitive strat-
egy the suboptimal intrinsic+extrinsic cue weight prediction.
Figure 2c shows that empirical weights are correlated with
the suboptimal insensitive predictions (r ¼ 0:482, p ¼ 0:007),
but the position of most points below the identity line
and figure 2f show that empirical weights differed signifi-
cantly from the suboptimal insensitive predictions
(t29 ¼ 4:16, p , 0:001). The BF in favour of the alternative
suggests there is extreme evidence for a difference between
empirical and suboptimal weights (BF10 ¼ 110:7). This
suggests that participants are not completely insensitive to the
extrinsic uncertainty, but only partially account for it.
(b) Individual differences
An advantage of running a Bayesian model with JAGS is that
it provides uncertainties around the variable fits, unlike a
maximum likelihood approach which just gives the best
fitted parameter value. We can therefore also examine how
well individual subject parameters were fitted, e.g. the Baye-
sian confidence intervals of parameters such as the visual
weight. Using the JAGS output we calculated the Bayesian
confidence interval for the visual weight, finding that for
the intrinsic-only dataset for 18 out of 30 participants the
optimal weight was outside their 95% confidence intervals,
while for the intrinsic+extrinsic dataset the proportion was
22 of 30 participants (figure 3).

To explore further what participants did we also compared
the empirically fitted weight values to those of a model partici-
pant who only used their best modality (whether visual or
auditory). Only two of the participants in the intrinsic-only
condition had a Bayesian confidence interval that included
the possibility of just using their best modality, and none of
the participants did in the intrinsic+extrinsic condition. For
all the remaining participants (28 and 30) we could therefore
rule out that they only used their best modality.

(c) Switching
One possible reason that participants could attain a weight
on the visual cue that would be indistinguishable from
optimal would be to perform a random switching between
reporting the noisy percept from the two modalities, at the
right ratio but without actually combining them (also referred
to as probability matching). Such behaviour has previously
been found in perceptual cue integration experiments (e.g.
[47]). To rule out this idea we ran a variant of the model
above that included an individually fitted probability of the
participants performing switching instead of integration.
We found a low average probability of subjects using a
switching strategy of 0.195 for intrinsic-only and 0.212
for intrinsic+extrinsic. These values were not significantly
different (rank sum test p = 0.631), hence there was no evi-
dence that the datasets differed based on propensity to use
switching over integration. Overall, this implies that there is
a small likelihood that participants were using a switching
strategy and that it was more likely that were indeed combin-
ing stimuli based on the optimal weights for the intrinsic-
only dataset (but not for intrinsic + extrinsic).

(d) Variable error
An advantage of using Bayesian inference is the reduction in
error, hence if we expected participants to be using optimal
weighting there should be an advantage in error. However in
practice these error reductions are only found when visual
and auditory stimuli are calibrated to have well matched
error levels, otherwise the ideal observer predicted advantage
may differ too little from the best single cue to bemeasurable in
noisy responses [48,49]. Unfortunately, as we did not foresee
the issue of central tendency bias (see Methods above, [44],
and the electronic supplementary material), we did not
match variable error using the intrinsic-only and intrinsic+
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extrinsic visual cues in the test block as intended (see the
electronic supplementary material).

The variable error for the intrinsic-only dataset (calcu-
lated for congruent audio and visual stimuli, unlike the
calculation above for visual weight based on incongruent
stimuli) did not show a significant improvement over the
variable error for the single best modality for each participant
(Wilcoxon signed-rank test, p = 0.371, median =−0.002). Non-
intuitively, there was however a small but significant advan-
tage of using intrinsic + extrinsic visual together with audio
( p = 0.032, median = 0.004), probably owing to the better
matching of the visual error with the audio error. The unin-
tended higher uncertainty in the intrinsic only than the
intrinsic+extrinsic condition meant that noise in this con-
dition was less well matched to the audio noise, leading to
a lower potential gain. See the electronic supplementary
material for full details of this analysis.
.Soc.B
378:20220349
4. Discussion
We introduced a distinction between intrinsic and extrinsic
uncertainty during decision-making. While perceptual
and other decision tasks can vary in many ways, a key
difference is often the kind of uncertainty involved. Percep-
tual decision-making usually involves uncertainty that is
intrinsic to the perceptual system itself, and to which it
may therefore have good access [23–27]. In line with this,
the intrinsic uncertainty in perceptual tasks is often efficiently
mitigated by reliability-weighted combination [6–9]. By con-
trast, when uncertainty arises in processes external to the
observer, it must be learned in order to be accounted for.
While this difference may go some way towards accounting
for differences in how people deal with uncertainty across
decision tasks, those tasks typically have many other differ-
ences too. Therefore, in the present study, we developed a
perceptual task to make this specific comparison directly.
To do so, we manipulated levels of intrinsic versus extrinsic
uncertainty while keeping the task and stimuli the same
across these manipulations. We tested the extent to which
decision-makers take uncertainty into account when using
multiple sensory estimates for a localization task, and tested
the prediction that participants would follow the reliabilities
of estimates better with intrinsic-only than with intrinsic+
extrinsic uncertainty.

As predicted, we found near-optimal (or rather, not statisti-
cally different from optimal) weighting of sensory estimates
when uncertainty was only intrinsic, but mis-weighting of
estimates when extrinsic uncertainty was added. Specifically,
participants over-relied on an extrinsically uncertain signal,
suggesting that they are to some degree ‘blind’ to this source
of uncertainty. However, they relied on it more than the
prediction for participants completely blind to the extrinsic
uncertainty. That is, participants fully accounted for
uncertainty when it was purely intrinsic, but only partially
accounted for it when it was also extrinsic. These results are
in line with the observation that intrinsic uncertainty within
a perceptual process can in principle be read out from the
estimate’s neural representation [23–27], while extrinsic uncer-
tainty as reflected by the statistics of how an external process or
agent behaves needs to be learned—either from an external
information source [29–31], or (as here), by directly learning
from experience.
These results also add to a growing literature on the
description-experience gap [50], which shows how information
that is not directly experienced, but based on abstract symbolic
representation, is not correctly weighted within a Bayesian fra-
mework. This account of the issue of an experienced physician
under-weighting the likelihood of a disease they have not per-
sonally encountered (see Introduction) would propose that
they do not accurately represent the uncertainty of this infor-
mation, as it was not experienced but merely described to
them. In our task, the new information about external uncer-
tainty was experienced, but was presented and learned in a
manner different to internal noise. This provides a clue to
which factors are important for the correct Bayesian inference:
an insight is that not only whether the information is experi-
enced, but the manner in which it is experienced, may
be important.

Our task was designed to allow participants to learn about
the extrinsic uncertainty. We explained the different trial types
with a cover story that suggests a model for different kinds of
uncertainty across conditions consistently denoted by differ-
ently coloured stimuli, and participants received feedback
through which they could learn about the uncertainties of the
two different cues. Our results showed that there was some
learning of the extrinsic uncertainty: participants were not
completely blind to it, as would be the case if they had not
learned about it. An open question is the time scale over
which observers might or might not perfectly learn and/or
use this kind of uncertainty during decision-making: given
much longer experience with stimuli like these, how much
closer would performance come to optimal? Even with perfect
learning of the external variability, would people still account
for this differently to internal variability in their perceptual
decisions? How does this generalize to other tasks and sources
of external variability/uncertainty? This calls for longer
studies, supported by ideal observer models of the process of
learning about uncertainty based on the feedback given.

A key benefit of weighted combination of estimates is a
reduction in variance. An unexpected result of the present
study is that participants in the intrinsic uncertainty only con-
dition did not reduce their variance, even though they used
near-optimal weights. Our model-based analysis excludes the
interpretation that they were switching rather than averaging
estimates, so we believe that the most likely explanation
for the absence of this finding is that of our unplanned mis-
matching of reliabilities across intrinsic and intrinsic+extrinsic
uncertainty conditions. As with all cue combination studies,
attending to this issue is important to reliably detect variance
reductions [48,49]. Using continuous response (as compared
with alternative forced choice) methods, as here, has
advantages for collecting highly informative measurements,
but should in future be checked and corrected for central
tendency biases in order to accurately recover measurements
of variability [44].
5. Conclusion
Decision making under uncertainty varies in many ways
across real-life settings and experimental tasks. We have
highlighted one under-studied but crucial issue: the origin
of the uncertainty itself, intrinsic or extrinsic. With a novel
perceptual task designed to manipulate this factor alone,
we show that while participants account well for intrinsic
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uncertainty, they under-account for extrinsic. The time scale
for learning about this kind of uncertainty, and the generality
of this finding for other tasks, settings, and sources of
external uncertainty, are open questions for further research.
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Endnotes
1Other properties of observers, such as computational limitations, can
also distinguish them from ideal observers. For the present discus-
sion, we focus just on the more elementary issue of the noise
(variability) affecting observers’ estimates.
2There are some interesting but limited cases in which evolution or
(in artificial agents) programming could also provide an ideal obser-
ver with this information—mainly for simple physical processes, less
obviously for specific cases—e.g. the waiting times on this bus route
in particular, the shooting accuracy of this particular archer.
3We consider localizing the centre of a dot-cloud to be an elementary
spatial localization task (similar task to finding the centre of a dim
blob [7]). Dot clouds allow presentation of spatially-uncertain stimuli
to be operationalized in a highly controllable way, and multisensory
combination tasks using dot clouds are well fit by standard cue com-
bination models [20,40].
8:20220349
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