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Abstract 

After becoming disoriented, an organism must use the local environment to reorient and 

recover vectors to important locations. A new theory, Adaptive Combination, suggests that 

the information from different spatial cues are combined with Bayesian efficiency during 

reorientation. To test this further, we modified the standard reorientation paradigm to be more 

amenable to Bayesian cue combination analyses while still requiring reorientation in an 

allocentric (world-based; not egocentric) frame. 12 adults and 20 children at 5-7 years old 

were asked to recall locations in a virtual environment after a disorientation. Results were not 

consistent with Adaptive Combination. Instead, they are consistent with the use of the most 

useful (nearest) single landmark in isolation. We term this Adaptive Selection. Experiment 2 

suggests that adults also use the Adaptive Selection method when they are not disoriented but 

still required to use a local allocentric frame. This suggests that the process of recalling a 

location in the allocentric frame is typically guided by the single most useful landmark, rather 

than a Bayesian combination of landmarks. These results illustrate that there can be important 

limits to Bayesian theories of the cognition, particularly for complex tasks such as allocentric 

recall.  

 

Keywords: reorientation; bayesian development; spatial development; spatial cognition.  

 

Public Significance: Whether studying the development of children’s spatial cognition, 

creating artificial intelligence with human-like capacities, or designing civic spaces, we can 

benefit from a strong understanding of how humans process the space around them. Here we 

tested a prominent theory that brings together statistical theory and psychological theory 

(Bayesian models of perception and memory), but found that it could not satisfactorily 

explain our data. Our findings suggest that when tracking the spatial relations between 
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objects from different viewpoints, rather than efficiently combining all the available 

landmarks, people often fall back to the much simpler method of tracking the spatial relation 

to the nearest landmark.   
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An Adaptive Cue Selection Model of Human Spatial Reorientation 

Reorientation is the process of recovering one’s heading and position in a given space. 

This is a process that allows a disoriented organism to recover the correct vector to important 

locations. The ability to do this is a key adaptation for the vast majority of mobile organisms. 

The study of how humans and other animals do this has moved forward our understanding of 

both cognition (Lee, 2017; Mou & Zhou, 2013; Nardini et al., 2009; Twyman et al., 2018) 

and the mammalian brain (Cressant et al., 1997; Ito et al., 2015; Keinath et al., 2017; Park et 

al., 2011). This has especially become a crucial point in developmental studies of spatial 

cognition, igniting a debate over modular cognition (Cheng, 1986; Doeller & Burgess, 2008; 

Hermer & Spelke, 1996, 1994) versus adaptive behaviour (Cheng et al., 2013; Learmonth et 

al., 2002; Ratliff & Newcombe, 2008b; Twyman et al., 2018). A recent paper formalizes and 

details a specific proposal concerning adaptive behaviour (Xu et al., 2017). More than just 

adaptive, this new theory posits that children’s use of different cues to reorient is fully 

rational and Bayesian. The full name of the model is the adaptive cue combination model of 

human spatial reorientation. For brevity, we will refer to it as Adaptive Combination. The 

present study seeks to further test this model as a general way of understanding how humans, 

especially young children, reorient themselves to find goal locations.   

Adaptive Combination is an important model for the study of developing spatial 

cognition. Despite decades of research (Cheng et al., 2013; Lee, 2017; Miller, 2009), there 

are still debates about the way that different cues are used by young children to reorient. For 

example, an early theory posited that reorientation only depends on environmental surfaces or 

boundaries, with the exception of adults who have a linguistic mechanism of incorporating 

additional information (Hermer & Spelke, 1994). In other words, if the target was to the right 

of a wall that was relatively short and coloured blue, an adult can synthesize the two pieces of 

information (right of short + right of blue) into one linguistic construct that could guide 
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behaviour: ‘to the right of the short blue wall’. This theory, like many after it, faced a serious 

difficulty. It was discovered that young children’s performance can be improved through the 

addition of a non-boundary cue as long as the room is sufficiently large (Learmonth et al., 

2002). This showed that the process is not purely dependent on boundary information, even 

in young children. The present paper seeks to test Adaptive Combination independently in the 

hopes of leading towards a consensus on how developing spatial cognition handles multiple 

reorientation cues.   

If Adaptive Combination is true, it is also a breakthrough finding for the study of 

developing Bayes-like reasoning in perception and memory. Almost all previous studies to 

look at Bayesian cue combination in children under 10 years old have returned negative 

results (Adams, 2016; Burr & Gori, 2011; Chambers et al., 2018; Dekker et al., 2015; Gori et 

al., 2012; Jovanovic & Drewing, 2014; Nardini et al., 2010, 2013; Petrini et al., 2014), 

including one that looked at combination of cues for spatial recall (Nardini et al., 2008). For 

example, when judging a horizontal location with a spatialized audio cue and a brief visual 

cue, children under 10 years old fail to integrate the two efficiently; the precision of their 

judgements is not any better than with the visual cue alone (Gori et al., 2012). If the process 

of reorientation really does happen with full Bayesian efficiency, this means that spatial 

cognition is an exception to the general rule. Children might begin reasoning in a Bayes-like 

way in terms of reorienting first, then extend this to other cognitive processes throughout 

childhood. This again makes it vital to see if this theory can be verified independently: it has 

serious potential impact in terms of both spatial cognition and a general theory of how 

Bayesian reasoning develops.  

The remaining sections of the Introduction (1) detail this model and give further 

terminology; (2) specify the gaps in evidence for Adaptive Combination; (3) explain key 
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choices in the present study’s design; and (4) detail specific hypotheses and the way they will 

be tested.  

The Adaptive Combination Model and Terminology 

 First, we need to make it clear what the Adaptive Combination model is and how it 

works. The paper grounds the model first in optimal Bayesian principles, but largely leaves 

aside the issues of prior distributions (assumed to be uniform for all the data they model) as 

well as the question of explicit decision rules. Rather, they insert a number of typical 

assumptions into the broader Bayesian framework until the model is governed by a central 

law which specifies the way that multiple cues are used. That law is given in the paper in 

relation to four specific cues, reflecting the data they had available. That law can be stated 

generally as such:  

 

(1)  𝑓1+2(Response|Target) ∝ 𝑓1(Response|Target) ∗ 𝑓2(Response|Target) 

 

where the function 𝑓1(Response|Target) specifies the probability of given responses to 

given targets with only the first cue,  𝑓2(Response|Target) does the same for the trials with 

only the second cue, and 𝑓1+2(Response|Target) governs responses when both cues are 

presented at the same time. One can view this as the core pattern of interest when applying 

Bayesian cue combination models to cognition: under typical assumptions, it (a) respects 

Bayesian principles, (b) optimally integrates the information given by both cues, and (c) 

minimizes uncertainty (Ernst et al., 2016). We will discuss this with the term Bayesian cue 

combination, but the reader should also be aware that Bayesian principles can result in 

additional and/or different predictions if other assumptions are inserted – for example, if a 

non-symmetric loss function is used. The reader should also be aware that the same pattern 

can be motivated through a maximum likelihood framework (Ernst & Banks, 2002).  
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 To further understand Equation 1, an example might be helpful. Some more 

terminology will be needed. In the typical reorientation paradigm (Figure 1), children are 

placed in a rectangular arena and shown a target hidden in one corner. They are disoriented 

and then released to search one of the corners for the target. The correct corner is 

conventionally called C (for correct), the rotational equivalent called R (for rotational 

equivalent), the corner on the same short wall as the target called N (for near), and the corner 

on the same long wall called F (for far). If the geometry of the room is the only available cue, 

this is a G condition (for geometry). If there is also something unique about one of the walls 

to associate with the target, then it is an A+G condition (Associative + Geometry).  

 

Figure 1. Examples of previous results with reorientation tasks. Children were placed in a 

rectangle arena with four hiding locations, one in each corner. The target was hidden in the 

corner marked ‘correct’. Children were first disoriented and then allowed to search for the 

target. On the right, participants can only use the geometry to find the target. This means that 

they respond in roughly equal numbers at the correct corner and its rotational equivalent (i.e. 

both corners with a long wall to the left and a short wall to the right). On the left, one of the 

walls was coloured blue, while the others were white. This associative cue made it possible to 

disambiguate the correct corner and its rotational equivalent. Children responded more often 

at the correct corner. 

 

We can now insert some specific numbers and give example calculations. With 

boundary geometry alone, suppose participants respond at C 40% of the time, R 40%, N 

10%, and F 10%. That is 𝑓1(Response|Target). Suppose that an associative cue alone would 

point a child to C 40%, R 10%, N 40%, and F 10%. That is 𝑓2(Response|Target). Assuming 
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that Adaptive Combination is correct, we can now predict how often they will respond at 

each location during an A+G condition. We multiply to obtain P(C) = 0.4*0.4 = 0.16, P(R) = 

0.04, P(N) = 0.04, and P(F) = 0.01. These then have to be normalized (divided by their sum) 

to arrive at the final probabilities. Those are P(C) = 64%, P(R) = 16%, P(N) = 16%, and P(F) 

= 4%. That is 𝑓1+2(Response|Target).  

Equation 1 can lead to a variety of different interesting patterns, but one will be 

particularly critical here. In the example, the two cues presented together led to a higher 

proportion of correct answers (64%) than either cue alone (40%). In general, if both f1 and f2 

have some kind of concentration (a discrete mode or a continuous peak) in the same place, 

then f1+2 will have an even greater concentration around the same place. In the particular case 

where f1 and f2 are normal distributions, f1+2 will be a normal distribution with precision 

(1/variance) that is additive: it will be equal to the sum of the precisions of f1 and f2.  

The general framework for Bayesian cue combination, crucially for our purposes 

here, is completely agnostic about any detail beyond Equation 1. It has no preference or 

disregard for any particular kind of cue. It does not matter what domain the task is within 

(e.g. spatial memory, speech perception, weight perception, etc.). It works the same way if 

the two cues are very different, such as a boundary and a local landmark, or if they are very 

similar, such as two landmarks, or even if they are the exact same stimulus played repeatedly 

(Jones, 2018). It functions for either continuous responses or discrete nominal responses. It 

only matters that f1, f2, and f1+2 can be specified. 

The Need for Additional Scrutiny 

 Second, we need to clarify where the gaps in evidence for Adaptive Combination 

exist. In the literature on Bayesian perception and decision-making, there is a standard set of 

three findings that are used to show that two cues are combined in a Bayesian manner. This is 

routine enough that it has been codified into a tutorial with supporting R packages for the 
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case of normal distributions (Ernst et al., 2016). The procedure measures how precise 

participants are with one cue in isolation, the other cue in isolation, and both cues together. It 

then must be shown that (1) precision is better with both cues versus the first cue in isolation; 

(2) precision is better with both cues versus the second cue in isolation; and (3) precision is 

not significantly different with both cues versus the Bayesian optimal prediction (predicated 

on Equation 1). These findings rule out the alternative hypothesis that either single cue is 

being used in isolation; otherwise, we would not expect better precision when both are 

presented. These findings also speak against the alternative hypothesis that the two cues are 

being used together in some non-Bayesian fashion; since Bayesian cue combination is the 

optimal way to improve precision, no other process could also match the optimal Bayesian 

precision.  

 While the procedure above is designed for assessing cue combination in the case of 

normal distributions, it adapts readily to discrete nominal distributions. It should still hold 

that (1) there is a difference between the response distribution with one cue versus both cues; 

(2) there is a difference between the response distribution with the other cue versus both cues; 

and (3) the distribution of responses with both cues is not significantly different than the 

prediction given by equation 1. This set of findings rule out the possibility that any single cue 

is being used in isolation. They also speak against the alternative hypothesis that the two are 

being used in some way that does not conform to Bayesian cue combination.   

 Unfortunately, the paper arguing for Adaptive Combination (Xu et al., 2017) only 

provides one of the three pieces of evidence. Specifically, it reviews evidence that 

performance with A+G conditions differs from performance with G conditions. It does not 

show that performance with A+G conditions differs from performance with A conditions 

(where only an associative cue is presented; in practice, a square room with a single uniquely 

coloured wall). It also does not use data from G conditions and A conditions to derive 
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predictions for A+G conditions and compare that to A+G data. This leaves open the 

alternative hypothesis that children may complete an A+G condition by only using the 

associative cue. Twyman and colleagues (2018) also pointed out the need for this type of data 

in their discussion (p. 934).  

We tried to fill this gap as best as possible by looking through the available literature. 

Unfortunately, this attempt failed to show that performance in A+G conditions is different 

than performance in A conditions. We re-examined previous data for an A+G condition 

(Learmonth et al., 2002) and an A condition (Hermer-Vazquez et al., 2001). Since results are 

known to depend on age, we used the data from 5 year olds from both studies. As Adaptive 

Combination is theorized to ignore associative cues in small rooms, rather than combine 

them, we also used the data from the larger room in the Learmonth et al. (2002) study. These 

data are reproduced in Table 1. Analysis suggests that the two distributions are not reliably 

different, X2(3) = 2.08, p = 0.56. Further, a Bayesian version of this analysis can test the 

hypothesis that the response distributions are the same versus the hypothesis that they are 

different. This analysis results in BF01 = 18.44, considered ‘strong’ evidence that they are 

actually the same. We would present additional analyses, but A conditions are relatively rare 

in the literature and this was the only comparison we could find with a sufficient age match, 

the standard methods described above, and a full report of the response distributions.  

 

Table 1.  

 Correct Rotation Near Far 

H-V 2001 (A) 65 (51%) 21 (16%) 27 (21%) 15 (12%) 

L 2002 (A+G) 25 (63%) 6 (15%) 5 (13%) 4 (10%) 

 

 There is also another project that examined cue combination in reorientation (Wang et 

al., 2018), but it also leaves further need for investigation. They used streets (S) and buildings 

(B) as cues in an adult sample. On the one hand, there was no significant difference between 
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dual-cue SB performance and the predictions of their combination model. Further, a BIC 

analysis favoured a combination model over a single-cue model. On the other hand, there was 

no significant difference between single-cue B performance and dual-cue SB performance in 

either experiment. In addition, the BIC delta was 4.0 – a result that is typically considered 

‘positive’ but not ‘strong’ or ‘decisive’ (Kass & Raftery, 1995). Further, since it was an adult 

sample, it does not particularly help resolve questions about development. It is ultimately an 

interesting but mixed set of results that leave open the need for further study.   

From the point of view of the literature on Bayesian perception and decision-making, 

this makes it clear that further evidence is needed for the Adaptive Combination model. The 

reanalysis of the available previous data suggests that Bayesian reasoning is not occurring 

here. Instead, it suggests that participants in an A+G condition are merely using the 

associative cue to complete the task. This is certainly an unusual interpretation – to our 

knowledge, it has not previously been tested if performance in an A+G condition might 

depend entirely on the use of the associative cue. However, it may still be possible to improve 

on this analysis. This will be described in more detail in the next section, but briefly: the 

number of trials per participant is (radically) smaller than most cue combination studies, it is 

not ideal to use cues that are not equally useful, and it is not ideal to use between-subjects 

data. We therefore designed a new study to test Adaptive Combination in a more rigorous 

fashion.   

The Present Study 

 Third, we now outline key design decisions for the study. To do this, we need to 

comment on our focus with this design. We need to draw a distinction between reorientation, 

the process of regaining a sense of place and heading to find goal locations, and the 

reorientation paradigm, a common method where participants are placed in a rectangular 

room and asked to find a target in one of the corners. We are interested in reorientation. We 
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are not directly interested in the reorientation paradigm itself; we are only interested in it to 

the extent that it provides information about reorientation. At first, this may seem to put us at 

odds with the authors of the Adaptive Combination model since they only used data from the 

reorientation paradigm. However, this is not the case. A full and careful reading of their paper 

indicates that they are not aiming only to understand the particulars of how young children 

deal with being turned around in a rectangular room with a blue wall. It makes sense that they 

modelled the classic reorientation paradigm because those were the data that were available 

in great enough quantities to model in a meaningful way with their approach. However, the 

goal of the paper, like ours, is to examine a general model and principle that could be a 

unified explanation for behaviour across different environments and across development. 

From our point of view, it will be a major strength if Adaptive Combination can predict 

outcomes in a reorientation task that falls outside the reorientation paradigm; if it cannot, we 

view this as a limitation that is at least worth considering. Based on our overall view, we 

chose to fashion our task towards the best test of the underlying Bayesian mechanics without 

particular regard to the typical reorientation paradigm.  

 Any cue combination study faces a number of routine problems to overcome (Ernst et 

al., 2016), all of which make a standard A+G method less than ideal. First, the two cues to be 

presented should ideally be matched in their reliability; participants should be about as 

precise with either cue. This is the situation in which the potential benefit of combination is 

greatest, and so the one in which the Bayesian optimal prediction is as different as possible 

from the alternative hypothesis that only one cue is being used. Second, it is also ideal to use 

a task for which the noise in perception/memory is approximately normally distributed 

around the target. This makes it possible to analyse precision (1/variance), which generally 

provides more statistical power than discrete nominal distributions. It also makes it possible 

to use simple, standard ways of predicting the optimal precision (Ernst & Banks, 2002). 
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Third, it is ideal to use a situation where each participant can provide the highest possible 

number of trials, allowing for a within-subjects design. This makes it possible to calculate 

individual predictions for Bayesian optimal precision and compare these to individual 

measurements of precision with both cues. None of these three conditions are met in a 

standard A+G condition: the associative cue is more reliable than the geometric cue (Hermer-

Vazquez et al., 2001; Lee et al., 2012; Nardini et al., 2009), the errors are discretely 

distributed, and young participants will not generally tolerate much more than four trials in 

total.  

Instead, we adapt a method from previous studies (Negen, Heywood-Everett, et al., 

2018; Negen, Roome, et al., 2018). Virtual reality is used to make the trials faster and to 

make the task more engaging. Participants are shown a target being hidden among some 

landmarks. They then have their view blocked while their perspective changes. From this 

new perspective, the participant attempts to point where the target was hidden. On some 

trials, there is a pair of landmarks marking the North/South axis of the space. We refer to this 

as a NS trial. On other trials, there is a pair of landmarks marking the East/West axis. We 

refer to this as an EW trial. In the last kind of trial, both pairs of landmarks are available. We 

refer to this as a NSEW trial. (Throughout, we use NS to mean a trial type and N/S to mean 

an axis of the space; similar with EW an E/W.) This allows us to measure performance with 

two different cues (landmark pairs) in isolation and with both together. Participants included 

both adults and children (5-7 years), since Adaptive Combination is supposed to apply across 

the lifespan.  

This design overcomes the usual problems described above. Since both cues are 

landmark pairs, they are matched in reliability. Responses on this kind of task are 

approximately normally distributed around the targets. Since more trials are tolerated, a 

within-subjects design is possible. This makes it a good way to test if reorientation cues are 
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used together in a Bayesian manner. In that sense, the present study is a test of a general 

version of Adaptive Combination rather than a test of its ability to explain the specific 

reorientation paradigm that is so prevalent in the literature.  

Hypotheses 

Fourth (and finally), we detail the specific hypotheses and what predictions they 

make. For each of the three hypotheses, we first give a conceptual description in the top 

paragraph, followed by a bottom paragraph that lays out and justifies the specific empirical 

predictions about three outcome measures. Figure 2 is a reference guide for the different trial 

types and the empirical predictions of each hypothesis. The appendix contains simulations 

that verify these are the correct predictions.  
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Figure 2. Trial types and key predictions. In terms of the methods, every trial is a NS trial 

(with North and South landmarks visible), an EW trial (East and West visible), or a NSEW 

trial (all four visible). However, for the analysis to differentiate between hypotheses, it is 

useful to regroup the trials. On the top half of this figure, the blue squares indicate which 

trials are included in each of the three regrouped categories. There are 25 possible targets in a 

5x5 grid. The black dots indicate which landmarks are visible during those trials. NSEW 

includes all trials where all four landmarks were visible. NS or EW includes all trials where 

only the North and South landmarks were visible, plus the trials where only the East and 

West landmarks were visible. Near trials are a subset of NS or EW trials where the 

participant has the nearest possible landmark (or at least one of them if several are 

equidistant). The bottom table gives predictions. As the table shows, these regroupings allow 

us to test different predictions from the different hypotheses. The text justifies each entry in 

the lower table.  
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Main Hypothesis: Adaptive Combination. As governed by Equation 1, the 

participant combines the information from the two landmark pairs in the optimal Bayesian 

fashion. This is a new extension (Xu et al., 2017) of the adaptive behaviour proposal (Cheng 

et al., 2013); it suggests that participants are not only taking account of which cues are 

available and which one is best, but also combining different cues while weighting them in 

line with Bayesian principles. This would be in line with how adults perform in many simple 

perceptual tasks (review, Pouget, Beck, Ma, & Latham, 2013). If this hypothesis fits 

children’s performance, that would break with the general pattern of children under 10 failing 

to show Bayesian reasoning (Burr & Gori, 2011) and warrant the exploration of a new theory 

of how Bayesian reasoning develops.  

Figure 2 defines which trials are considered NSEW trials, NS or EW trials, and Near 

trials. The Adaptive Combination hypothesis predicts that precision in NSEW trials will be 

equal to the optimal Bayesian precision. In other words, the optimal Bayesian process should 

produce the optimal Bayesian precision. There is a simple and well-known formula used to 

predict the optimal Bayesian precision (Ernst & Banks, 2002). This hypothesis also predicts 

that NSEW accuracy will be better than NS or EW accuracy. This is predicted because the 

Bayesian process should always benefit from additional landmarks – NSEW trials have four 

landmarks, but NS or EW trials have only two. NSEW accuracy should also be better than 

Near accuracy for the same reason (Near trials also have only two landmarks).  

Alternative Hypothesis: Adaptive Selection. If participants do not use multiple cues 

with full Bayesian efficiency, they may still adopt a sensible strategy that constrains error 

while only using one landmark. Under Adaptive Selection, participants select the landmark 

nearest to the target, encode the target location against it, and ignore the other landmarks. In 

doing so, they improve average performance over just using a random landmark – but not as 

consistently as a Bayesian process would. This is more in line with older forms of the 
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adaptive proposal (Cheng et al., 2013). It posits that children take account of which cue will 

be most useful and use this to guide which cue they use, but does not entail any combination 

of landmarks, i.e. Bayesian reasoning. This would be in line with previous results where 

children are capable of selecting the best single cues. For example, they tend to prefer visual 

cues for judging spatial relationships and auditory cues for judging temporal relationships 

(Gori et al., 2012). However, it would not allow for any new conclusions regarding Bayesian 

reasoning in development.  

This hypothesis predicts that precision in NSEW trials will be worse than the optimal 

Bayesian prediction. In other words, a non-optimal non-Bayesian process should not lead to 

the optimal Bayesian precision. This hypothesis also predicts that accuracy in NSEW trials 

will be better than accuracy in NS or EW trials overall, since the NSEW trials will sometimes 

have a nearer (better) single landmark to select and use. For example, look at the top middle 

target in Figure 2. The nearest landmark, at the North, is visible on every NSEW trial. 

However, it is not present during half of the NS or EW trials. This should drive higher NSEW 

accuracy than NS or EW accuracy. However, Near accuracy should be equivalent to NSEW 

accuracy, since they both provide the nearest (best) possible landmark to select and use. For 

example, looking again at the top middle target, the North landmark is visible for all NSEW 

trials and all Near trials.    

Null Hypothesis: Random Cue Selection. On a trial with both landmark pairs, the 

participant chooses one landmark at random and encodes the target against it. The other 

landmarks are ignored. In essence, under this hypothesis, a NS or EW trial is a NSEW trial 

where we have done some of the random choosing for the participant. This would be similar 

to how children performed in a previous spatial task with two cues available, alternating in an 

unpredictable way between self-motion information and landmark information (Nardini et al., 
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2008). However, again, it would not allow for any new conclusions regarding early Bayesian 

reasoning.  

This predicts that precision in NSEW trials will be worse than the optimal prediction. 

This is again because the non-optimal non-Bayesian process should not produce the optimal 

Bayesian precision. It also predicts that accuracy in NSEW trials will not be different from 

accuracy in NS or EW trials overall. For example, we can look at the top middle target in 

Figure 2 again. On a NSEW trial, we only expect them to use the North (best) landmark on 

one out of four trials. We would expect the same thing for NS or EW trials (two trials would 

have the North and South available, with the North selected on one trial). This hypothesis 

further predicts Near accuracy will be better than NSEW accuracy. For Near trials, we would 

expect them to use the North landmark two times out of four. In other words, in a Near trial, 

the lack of poor encoding choices should actually help participants if they are choosing 

encoding references randomly.  

Experiment 1 

Method  

Ethics approval was granted by the Durham University Psychology Ethics Committee 

(Reference “09/15 Development of Spatial Cognition”).   

Participants 

There were a total of 36 participants tested. Of these, 12 were adults (seven female). 

They ranged from 18 to 23 years old, with a mean of 20.9 years and a standard deviation of 

1.25 years. The remaining 24 were children. Four did not complete the task, one because the 

headset was too large and three due to mood. Of the remaining 20 (four females), they ranged 

in age from five years and zero months to seven years and five months, with a mean of 6.1 

years and a standard deviation of 0.6 years. All participants were recruited in the Northeast 

UK area. To the knowledge of the researchers, no children had been diagnosed with any 
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perceptual or developmental disorder that might have affected task performance. The 

advertisements asked only for participants with normal vision or vision that could be 

corrected to normal with contact lenses. Adult participants (Psychology undergraduates) 

earned credits in a scheme where undergraduates participate in each other’s research projects. 

Children were given a small toy of their choosing. Written informed consent was obtained, 

either from the adults themselves or the parents of the children. Verbal assent was also 

obtained from the children themselves. Given the three specific hypotheses and the large 

effect sizes expected between them, we were comfortable with the power given by 12 adults 

or 20 children: 80% power at an effect size of 0.76 or 0.58.  

Apparatus 

The study used WorldViz Vizard 5 software and the Oculus Rift headset. It also used 

an Xbox One controller. The virtual world (Figure 3) contained three major features situated 

around a 5m x 5m virtual space. First, there was a set of train tracks in a circle around the 

central space with a small cart. The cart could move around the tracks and had opaque 

shutters that could come up and down. The participant’s perspective was always from within 

the cart. Second, there was a set of four landmarks which could fade in and out of view. They 

were each unique and distinctive: black spheres, grey pyramids, red blocks, and blue cones. 

With the centre of the space at (0, 0), these were placed at the four cardinal points: (0, 3), (0, -

3), (3, 0), and (-3, 0) in meters. Third, there were the diggers. These were the characters that 

played the game with participants. To make them more engaging to the children, they were 

given silly names and apparel. One digger, who had a moustache and wore a pipe hat, was 

named Digger T. Diggington III. The other digger, who wore a set of glasses with jewels and 

a large feather attached to a band around her head, was named Martha Diggington, Esquire. 

The 3D models for the Diggingtons had joints in the digging arm to their front so that they 

could be animated as digging a place for the target and then digging it back up. Fourth, there 
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were the jewels. These served as targets to find. They were translucent blue (80% opacity) 

and fashioned after a round brilliant cut. There were no other landmarks or features in the 

environment that could be used to reorient (e.g. the skybox was uniform blue). The ground 

had a repeating sand texture at 20% opacity.   

Procedure 

The game began by allowing the participant to select the character they wanted to 

play with. The other character faded out of view. The first warmup trial began.  

Each trial involved a series of four steps (Figure 3). First, the target was shown. The 

digger went to the target location. They stayed there for 3.5 seconds while an animation 

played of the target (jewel) being buried. The last 0.5 seconds involved the jewel going 3m 

into the air and moving straight down into the ground to make it as clear as possible exactly 

where it was.  

 

Figure 3. Methods for Experiment 1. (A) A first-person screenshot of the view within the 

experiment. Please be aware that the lenses of the Oculus Rift slightly distort the internal 
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screen image, so the image given to it is distorted in the opposite way. For example, in the 

headset, it is clear that the red and blue landmark face each other directly; in the screenshot, 

they appear slightly offset. (B) First, the target (blue hexagon) was shown to the participant 

while they were in the cart (dashed box). Then the cart ‘closed’, blocking their view, and the 

participant was moved +90, -90, or 180 degrees around the track (black circles). Then the 

view was opened and the participant moved a grey cone to the point where they believed the 

target to be. Finally, feedback was given as to the correct placement. This could be done with 

either the North and South landmark (red and blue), the East and West landmark (grey and 

black), or all four. 

 

Second, there was the disorientation. The opaque shutters on the cart moved up to 

block the participant’s view. Three seconds passed while a sound effect of a train moving 

played. The viewpoint changed. The shutters then lowered. This took a total of four seconds. 

Participants were told that the cart moves around the track to a new location. This 

disorientation procedure has the key effect of placing participants at a new, unpredictable 

viewpoint, although without physically turning them as has been common in some other 

studies1. 

Third, there was the response. The participant used the joystick on the controller to 

move a large arrow with its tip on the ground within the 5m x 5m central space. There was a 

grey circle on the tip of the arrow with a radius of 75cm. When satisfied with the location, the 

participant pressed a button on the controller to enter their response. They were allowed as 

much time as they wanted, but younger participants were encouraged to take their best guess 

if they said that they did not know the right place.  

Fourth, there was feedback. The digger moved over to the response location and 

played a 2s digging animation. If the response was within 75cm of the target, the jewel 

                                                           
1 In the original studies (Cheng, 1986), the method was to gently remove the animal, move the experimental 
apparatus to another part of the room, then gently replace the animal with a new viewpoint and direction, all 
in the dark. There was no spinning or attempt to induce a vestibular / proprioceptive signal related to the 
disorientation. In subsequent studies with humans (particularly, children), practicalities including time limits 
made it necessary to induce viewpoint change via blindfolding / spinning. This has some unfortunate side-
effects, including the possibility of disturbing the young participants and making them feel dizzy. We consider 
virtual viewpoint changes to be a welcome return to avoiding these unwanted issues, as long as participants 
are clearly made aware in other ways (as here) that a viewpoint change has occurred. 
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appeared out of the ground, a small ‘ding’ sound played, and the digger jumped up and down 

in a celebratory animation. If not, no jewel appeared, no sound played, and the digger turned 

towards the participant to play a ‘deflated’ animation. Over the course of 1s, their body 

widened along the ground plane by 20% while their height shrunk 20%. It then returned to 

normal shape over the next 1s. During this, a small blue circle flashed on the ground at the 

correct target location. When a button on the controller was pressed again, the next trial 

began.  

The first five trials were considered warmup trials. These data are not analysed in any 

part of the results. During this time, the experimenters gave the children hints and 

explanations about the game. For remaining trials, participants were not given any extra 

information about the target location.  

Stimuli and Trial Parameters 

Target locations were on a 5x5 grid with 1m spacing. For example, there was a corner 

target at (2, 2), a center target at (0, 0), an off-center target at (0, -1), and a target in front of 

the West landmark at (-2, 0). For the five warmup trials, the targets were always (0, 0), (0, 2), 

(2, 0), (-2, 0), and (0, -2). After that, for adults, all 25 possible target locations were used. For 

children, to make the game shorter, only nine target locations were used: (0, 2), (-1, 1), (2, 1), 

(-1, 0), (0, 0), (1, 0), (-2, -1), (1, -1) and (0, -2). These were selected to represent a range of 

different distances from the different landmarks and the center. Each target was tested once 

with the East and West landmarks (EW trial), once with the North and South landmarks (NS 

trial), and once with all four (NSEW trial). The order of trials was random. This means, in 

total, that adults produced 75 analysed trials each and children produced 27.  

The cart could travel either +90, -90, or 180 degrees around the track. This was done 

because the corners provided a good view of the target space where all four landmarks were 
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visible but not obstructing the 5m x 5m response area. The amount of travel was chosen 

randomly on each trial. Each trial began wherever the last one ended.  

Analysis Plan 

 To analyse these data, we planned to have four tests. First, just to confirm that the task 

was understood by participants, we checked that target locations and response locations were 

significantly correlated along both the x-axis and the y-axis. After this, responses were 

excluded as outliers if they were more than 2.5 standard deviations in error away from the 

target.  

 To make the next three tests clear, we need to comment on accuracy, mean error, 

precision, and variable error. Some of the hypotheses are stated in terms of accuracy. To be 

more specific, we intend this as the mean error: the average distance between the target 

location and the response location, calculated along the 2D plane using the Pythagorean 

Theorem. Lower mean error indicates better accuracy. The other hypotheses are stated in 

terms of precision. To look at precision, we actually analyse variable error: the standard 

deviation of the response locations minus the target locations (retaining the sign). As the 

variable error (standard deviation) of responses increases, precision decreases. Precision is 

conventionally defined as variable error raised to the power of negative two. Using variable 

error in the analyses, rather than precision, is standard practice in the cue combination 

literature (Ernst et al., 2016). This is because variable error tends to better approximate a 

normal distribution and tends to have a (much) less serious problem with sensitivity to 

outliers. In line with this, we analysed variable error. Lower variable error indicates better 

precision. Conveniently, this means that a shorter bar denotes better performance in all of the 

bar graphs that will be shown. Since responses were along a 2D ground plane, there is a 

separate variable error along each axis of the space. We used variable error to test specific 
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predictions about reaching the optimal Bayesian precision; otherwise, we used accuracy as a 

measure of performance.  

For the second test, we looked at the Bayesian optimal variable error in NSEW trials, 

where all four landmarks were visible, versus observed variable error in NSEW trials. 

Adaptive Combination predicts that these will be equal. In other words, an optimal Bayesian 

process should produce the optimal Bayesian variable error. Adaptive Selection and Random 

Selection suggest that observed variable error with both cues should be worse than the 

optimal prediction. In other words, a non-optimal non-Bayesian process should fail to 

produce the optimal Bayesian variable error. For each participant, along each axis, for each 

trial type (NS, EW, and NSEW), we calculated the variable error. For each participant, the 

optimal variable error is calculated with the equation (Ernst & Banks, 2002): 

 

(2)   𝜎𝑜𝑝𝑡 =  (𝜎𝐸𝑊
−2 + 𝜎𝑁𝑆

−2)−
1

2 

 

This comparison, as well as the next two, are tested with paired t-tests. This second test 

conforms entirely with the standard method of testing for optimal Bayesian cue combination 

(Ernst et al., 2016). Since the hypotheses for this test are directional, a one-tailed test was 

used.  

 Third, we tested the accuracy in NSEW trials versus the accuracy in NS or EW trials, 

where only two landmarks were visible. Random Selection predicts that accuracy should be 

the same in NSEW trials versus NS or EW trials – under Random Selection, a NS or EW trial 

is just a NSEW trial where we have done some of the random selection for the participant. 

Adaptive Selection and Adaptive Combination predict that NSEW accuracy should be better 

than NS or EW accuracy, using the additional information in a NSEW trial to improve 



Adaptive Selection 25 
 

accuracy through either selecting the best single landmark (Selection) or via Bayesian cue 

combination (Combination).  

 Fourth, we tested NSEW accuracy against Near accuracy. A trial is considered a Near 

trial if it is a NS trial or EW trial where a nearby single landmark is visible – at least as near 

as the nearest one in a NSEW trial with the same target (see Figure 2). This analysis proceeds 

on the assumption that accuracy at localising a target location using a landmark decreases as 

the target location gets further from the landmark (e.g. Negen, Roome, et al., 2018). Random 

Selection predicts that NSEW accuracy should be worse than Near accuracy, since the 

participant will sometimes randomly select one of the landmarks from the further (worse) 

pair to use on a NSEW trial. Adaptive Selection predicts that NSEW and Near accuracy 

should be equal, since participants complete a NSEW trial by only using the nearest landmark 

anyway. Adaptive Combination predicts that NSEW accuracy should be better than Near 

accuracy, since the Bayesian framework allows information from the further (worse) 

landmarks to be incorporated in a way that it still improves the responses.  

Bayes factors for t-tests and correlations were calculated using an online tool (Rouder 

et al., 2009) and Bayes factors for ANOVAs were calculated with Jamovi. The notation BF10 

indicates support for the alternative hypothesis and the notation BF01 indicates support for the 

null hypothesis.  

Results 

Results strongly favour Adaptive Selection for both adults and children. For adults, 

the responses were correlated with the targets along the x-axis, r(898) = 0.83, p < .001, BF10 

= 3.52x10225, and the y-axis, r(898) = 0.80, p < .001, BF10 = 1.37x10197 (Figure 4). Responses 

were excluded if they were more than 2.5 standard deviations away from the target (2.1m; 

4.3% or 77 observations). Variable error was worse (higher) than the Bayesian optimal 

variable error along both the E/W axis, t(11) = -1.97, p = 0.038, d = -0.57, BF10 = 1.72, and 
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the N/S axis, t(11) = -2.76, p = 0.009, d = -0.80, BF10 = 5.04 (Figure 5). Accuracy was better 

in NSEW trials versus the NS or EW trials, t(11) = -3.02, p = 0.012, d = -0.87, BF10 = 7.23 

(Figure 6). Accuracy was not better in the NSEW trials versus the Near trials, t(11) = 0.21, p 

= 0.839, d = 0.06, BF01 = 2.59. 
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Figure 4. Adult (A) and Child (B) data from Experiment 1. Red dots are responses on 

NS trials, where the North and South landmark are visible. Blue dots are EW trials. Purple 

dots are NSEW trials. The black square is the target. Black crosses are excluded trials.  
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Figure 5. Average variable error broken down by trial type (x axis), participant group (top vs 

bottom panels), and axis of the space (left vs right panels). Error bars are 95% confidence 

intervals for the mean. Asterisks mark significant paired t-tests against NSEW: *p<.05, 

**p<.01, ***p<.001. The red marking is the Bayesian optimal variable error. Both groups, 

along both axes, had significantly higher (worse) variable error than the Bayesian optimal 

variable error when shown all landmarks. This speaks against Adaptive Combination, but is 

consistent with either Adaptive Selection or Random Selection. 
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Figure 6. Accuracy compared with the NSEW trials, broken down by group (top versus 

bottom panels), trial type (x axis), and comparison trials (left versus right panels). Results 

favour Adaptive Selection, which predicts a difference versus NS or EW trials but not versus 

Near trials. 

 

If Adaptive Combination were correct, we would not expect to see a difference 

between the optimal variable error and the observed variable error with both cues. We would 

also expect to see that NSEW accuracy was better than Near accuracy. If Random Selection 

were correct, we would not expect to see a difference between NSEW accuracy versus NS or 

EW accuracy. We would also expect to see that NSEW accuracy was worse than Near 

accuracy. In other words, both Adaptive Combination and Random Selection were positively 

ruled out by statistically significant findings. In contrast, Adaptive Selection correctly 

predicted that the variable error with both cues would be worse than optimal, that NSEW 
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accuracy would be better than NS or EW accuracy, and that there would not be a difference 

between NSEW accuracy and Near accuracy.  

For children, the pattern was the same (but with worse variable error and accuracy). 

The responses were correlated with the targets along the x-axis, r(537) = 0.28, p < .001, BF10 

= 2.00x108, and the y-axis, r(537) = 0.31, p < .001, BF10 = 3.30x1010 (Figure 4). Responses 

were excluded if they were more than 2.5 standard deviations away from the target (3.75m; 

2.9% or 31 observations). Variable error was worse (higher) than the Bayesian optimal 

variable error along both the E/W axis, t(19) = -3.13, p = 0.003, d = -0.70, BF10 = 12.20, and 

the N/S axis, t(19) = -3.87, p = 0.001, d = -0.87, BF10 = 50.47 (Figure 5). Accuracy was better 

in NSEW trials versus the NS or EW trials t(19) = -3.30, p = 0.004, d = -0.74, BF10 = 11.84 

(Figure 6). Accuracy was not better in the NSEW trials versus the Near trials, t(19) = 0.25, p 

= 0.803, d = 0.06, BF01 = 3.22. By the same logic as the adults, this favours Adaptive 

Selection.  

Interim Discussion 

 The results of Experiment 1 point towards Adaptive Selection for both adults and 

children. Adaptive Selection is a non-Bayesian process of selecting the best single cue and 

using it in isolation. For children under 10 years, this is in line with previous research 

regarding the use of multiple cues (Adams, 2016; Burr & Gori, 2011; Chambers et al., 2018; 

Dekker et al., 2015; Gori et al., 2012; Jovanovic & Drewing, 2014; Nardini et al., 2008, 2010, 

2013; Petrini et al., 2014). Re-analysis of previous data agrees as well. This means that, in 

regards to the children, we now have a consistent and clear pattern of results. They likely do 

not use a Bayesian process in the classic geometric reorientation paradigm (see the re-

analysis of A versus A+G conditions in The Need for Additional Scrutiny). They do not use a 

Bayesian process in the present paradigm. They do not use a Bayesian process when given 
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landmark and self-motion cues (Nardini et al., 2008). Children under 10 generally do not use 

multiple cues in a Bayesian manner (Burr & Gori, 2012; though see Negen et al., 2019). 

 For adults, when considering both the present result and the previous literature, the 

overall pattern of results is somewhat disjointed and requires further examination. Adults can 

frequently use a Bayesian process in perception and memory (Pouget et al., 2013). It is not 

clear why adults would not have used a Bayesian process here. The next experiment is 

designed to see why this was occurring.  

To isolate the variable preventing cue combination, we can closely compare 

Experiment 1 and a previous study that did find cue combination (Jetzschke et al., 2017). 

Both studies used adults. Both studies used a virtual reality method. Both studies used 

multiple landmarks as the different cues. However, there are two differences. The previous 

study did not use an explicit disorientation procedure. Participants were led from a study 

location to a release location in a circuitous way, but with their eyes open and the landmarks 

always visible. This makes it difficult to trace the exact route back to the study location, but 

never particularly induces a sense of disorientation. This might be important because 

disorientation may induce specific neural processes that attend to specific spatial cues more 

than others (Cheng, 1986; Keinath et al., 2017; Knierim et al., 1995). The previous study also 

used a homing task, asking participants to return to the homing location, rather than a recall 

task, asking participants to select where a target location was presented. This is potentially 

important because homing relative to landmarks can be completed in a completely egocentric 

fashion, just remembering a ‘snapshot’ of what the landmarks looked like from the studied 

home viewpoint (Stürzl et al., 2008). The task here requires a completely allocentric strategy. 

Experiment 2 is therefore as similar as possible to Experiment 1, except it also removes the 

disorientation aspect; it disrupts egocentric vectors to the targets in a way that does not 

disorient the participant. If cue combination is observed, then the disorientation is likely 
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preventing cue combination. If not, then the difference is likely due to the task itself (homing 

versus recall) and its implications in terms of egocentric vs allocentric reasoning. 

Experiment 2 

 Experiment 2 is an experiment done solely with adults, as similar as possible to 

Experiment 1, but without disorientation. This was done to test the hypothesis that adults will 

combine cues in allocentric spatial tasks without disorientation, but not allocentric spatial 

tasks with disorientation.  

Method 

 The method was as similar as possible to Experiment 1, except without disorientation 

(Figure 7). In short, we spun the target and landmarks instead of the participant. To make this 

possible, the virtual environment was altered. The target area and the landmarks were raised 

onto a circular pedestal. The pedestal had identical markers placed around its edge. The 

ground near the pedestal also had identical markers. There was also a grey half-sphere that 

could appear over the top of the pedestal, blocking all vision of the target area and the 

landmarks. The participant’s viewpoint was set back another 2m so that they could see the 

spinning platform and the stationary ground around it, making it clear that the platform 

specifically was spinning (and not the participant moving around it). After being shown the 

target, the participant was not moved or turned in any way. Instead, the grey half-sphere 

covered the pedestal. The pedestal spun rapidly and erratically for three seconds, making it 

impossible to track the target egocentrically. The grey half-sphere was removed. The 

participant then attempted to point to the target location. This requires the participants to use 

the landmarks, which is the same as Experiment 1. One might think of this as a local or 

intrinsic allocentric frame. However, it induces no sense of disorientation. Beyond this, the 

experiment was the same as Experiment 1.   
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 Figure 7: Methods for Experiment 2. Participants were shown the target. The target and 

landmarks were covered and then spun rapidly and erratically. The cover was removed and 

the participant would then indicate the target from memory.   

 

Results 

 Results again favour Adaptive Selection. The responses were correlated with the 

targets along the x-axis, r(898) = 0.91, p < .001, BF10 = 1.1x10341, and the y-axis, r(898) = 

0.90, p < .001, BF10 = 3.41x10321 (Figure 8). Responses were excluded if they were more 

than 2.5 standard deviations away from the target (1.5m; 2.6% or 46 observations). Variable 

error was worse than the Bayesian optimal variable error along both the E/W axis, t(11) = -

2.15, p = 0.028, d = -0.62, BF10 = 2.18, and the N/S axis, t(11) = -1.93, p = 0.040, d = -0.56, 

BF10 = 1.64 (Figure 9). Accuracy was better in NSEW trials versus the NS or EW trials, t(11) 

= -7.15, p < .001, d = -2.06, BF10 = 577.52 (Figure 10). Accuracy was not better in the 

NSEW trials versus the Near trials, t(11) = 0.30, p = 0.772, d = 0.09, BF01 = 2.54. All of these 

patterns are the same as Experiment 1.  

  

    
Display Phase (1.5s) Spinning Phase (3.0s) Response Phase (Untimed) Feedback Phase (1.5s) 
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Figure 8. Adult data from Experiment 2 (without disorientation). Red dots are responses on 

NS trials, where the North and South landmark are visible. Blue dots are EW trials. Purple 

dots are NSEW trials. The black square is the target. Black crosses are excluded responses. 
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Figure 9. Average variable error broken down by trial type (x axis) and axis of the space (left 

vs right panels). Error bars are 95% confidence intervals for the mean. Asterisks mark 

significant paired t-tests against NSEW: *p<.05, **p<.01, ***p<.001. The red marking is the 

optimal prediction. Along both axes, participants had significantly higher variable error than 

the optimal prediction when shown all landmarks. This speaks against Adaptive 

Combination, but is consistent with either Adaptive Selection or Random Selection. 

 

 

Figure 10. Accuracy compared with the NSEW trials, broken down by trial type (x axis) and 

comparison trials (left versus right panels). Results favour Adaptive Selection, which predicts 

a difference versus NS or EW trials but not versus Near trials. 

 

 

 While the results are the same as the adults in Experiment 1 in terms of favouring 

Adaptive Selection, the lack of disorientation did lead to better overall performance. In a 2 

(Disorientation vs No Disorientation) by 2 (NSEW vs NS or EW) ANOVA, using mean error 

as the dependent variable, there was a significant effect of disorientation, F(1,22) = 4.47, p = 

.046, η2 = .124, BF10 = 1.83. Similarly, in a 2 (Disorientation vs No Disorientation) by 2 (NS 

axis vs EW axis) by 3 (NS, EW, or NSEW landmarks visible) ANOVA, using variable error 
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as the dependent variable, there was a main effect of disorientation, F(1, 22) = 7.77, p = .011, 

, η2 = .171, BF10 = 2.29, with worse (higher) variable error after disorientation. 

Sub-Optimal Cue Combination 

 The pattern of results above will likely raise post-hoc questions about the possibility 

that participants were using multiple cues in a sub-optimal way. In all three samples across 

both experiments, there were multiple times when the NSEW variable error was significantly 

lower than the NS or EW variable error. In Experiment 2, the variable error along the E/W 

axis was significantly lower in NSEW trials than NS trials and also significantly lower than 

EW trials. In many related studies, this would be taken as evidence for sub-optimal cue 

combination. We examined the data for evidence of sub-optimal cue combination and 

ultimately concluded that there is not sufficient evidence to warrant this interpretation.  

To examine this properly, we have to look carefully at the predictions made by 

Adaptive Selection. This hypothesis, which does not involve using two cues on the same trial, 

can still account for a lower variable error in NSEW trials than NS or EW trials. This is 

because some NS or EW trials have a larger distance from target to landmark than any of the 

NSEW trials. If these long distances to the landmark increase variable error, then a person 

who uses the nearest single landmark for encoding would still have a higher variable error in 

NS or EW trials than NSEW trials. Instead, to show that variable error decreases with 

additional landmarks in a way that cannot be explained by Adaptive Selection, we have to 

look at Near trials. Adaptive Selection predicts that there will not be a difference in variable 

error between NSEW trials and Near trials. Participants in both would just encode against the 

nearest single landmark. Sub-optimal cue combination predicts that variable error will be 

lower in NSEW trials than Near trials. Participants would integrate the additional information 

for higher precision.  
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To examine this, we calculated the variable error in Near trials and NSEW trials 

separately for each participant. These were entered into a 3 (group: Children, Adults with 

disorientation, Adults without disorientation) x 2 (trial type: NSEW or Near) x 2 (axis: N/S or 

E/W) mixed ANOVA (Figure 11). The main effect of trial type was not significant, F(1, 41) 

= .69, p = .41, η2 = .001, BF01 = 13.64, meaning that variable error was not significantly 

higher in Near trials than NSEW trials. No other within-subjects effects or interactions were 

significant. As expected, there was a main effect of group, with children having the highest 

variable error and the adults without disorientation having the lowest, F(2, 41) = 80.8, p < 

.001, η2 = 0.69, BF10 = 6x1011. A Friedman test was also conducted due to potential issues 

with unequal variance, entering NSEW N/S, NSEW E/W, Near E/W, and Near N/S variable 

errors. This did not find any effect, χ2(3) = 4.34, p = .23. All of this fails to support sub-

optimal cue combination over Adaptive Selection; if anything, the Bayes factor result (BF01 = 

13.64) actually points towards the lack of sub-optimal cue combination.  

 

 

 

Figure 11. Variable error as a function of trial type (NSEW or Near), axis, and participant 

group. Sub-optimal cue combination would predict that variable error in Near trials will be 

higher than variable error in NSEW trials. Adaptive Selection predicts that this effect should 

not appear. This effect was not significant in the present data. Error bars are 95% confidence 

intervals. 
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 This might also bring up some questions about our optimality predictions, so please 

allow us to present some short theoretical results to clarify that the optimal predictions are not 

biased towards Adaptive Selection. The typical formulation requires variable error to be 

constant for all targets (Ernst et al., 2016), which seems to be violated in the present study. 

This makes it possible to achieve a dual-cue variable error that is actually below (better than) 

the optimal prediction calculated here. This is because the optimal prediction uses a particular 

kind of average over targets (root mean squared), but some targets will have variable error 

below the average variable error, which creates a kind of lever for deeper noise reductions. 

Specific numbers will help as an example. Suppose cue 1 has a variance of 1 at location A 

and 2 at location B. Suppose cue 2 is the opposite, having a variance of 2 at location A and 1 

at location B. The overall variance of each cue will be measured on average at 1.5 (i.e. 

(1+2)/2=1.5). The optimal prediction will be 3/4 (i.e. (1.5-1+1.5-1)-1=3/4). The true optimal at 

each location will be 2/3 (i.e. (1-1+2-1)-1=2/3). Since 2/3 is less than 3/4, a truly optimal 

process could do better than the estimated optimal and a sub-optimal process could meet the 

estimated optimal. This would actually bias the results towards optimal cue combination. 

While differences in variable error due to distance to the nearest target could result in some 

small issues with the accuracy of our optimality predictions, these inaccuracies are expected 

only to go against our theoretical conclusion here.  

Interim Discussion 

 Experiment 2 was done to see if the difference in results between adults in 

Experiment 1 and a previous study (Jetzschke et al., 2017) was due to the use of 

disorientation in Experiment 1. Since results were like Experiment 1 (i.e. not showing cue 

combination), but Experiment 2 did not involve disorientation, this hypothesis seems 

unlikely. Instead, this isolates a more fundamental aspect of the tasks: here, participants had 

to use landmarks in a local allocentric frame to recall locations, whereas the previous study 
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asked participants to return ‘home’ in a way that allows egocentric snapshots to be useful. 

Other than this, Experiment 2 and the previous study both tested adults, used virtual methods, 

did not disorient participants, and used multiple landmarks as the cues. 

 It may also be helpful to contrast the difference in Experiments 1 and 2 versus other 

studies that use movement of observer versus scene. Moving a participant around a scene 

often results in better performance than moving a scene in front of a participant (e.g. Mou et 

al., 2009). Here, changing the participant’s viewpoint within a stable scene led to worse 

performance than moving the scene in front of the participant. There could be a number of 

reasons for the contrast. The most obvious is that vestibular information could be used to 

update egocentric relations to the scene in other studies; moving the participant might allow 

for a more accurate egocentric strategy that was not available in Experiment 1 here. This also 

fits with a series of additional findings where the advantage is eliminated or reversed by 

giving participants additional information about the magnitude of the displacement in lieu of 

vestibular information (Mou et al., 2009). 

General Discussion 

Both experiments point strongly towards Adaptive Selection, a non-Bayesian process 

of selecting the most useful landmark and using it isolation. They point away from Adaptive 

Combination, a Bayesian process. Specifically, the Bayesian predictions about precision were 

consistently violated. They also point away from Random Selection, a non-Bayesian process 

of selecting a landmark to use at random. Specifically, accuracy was better than we would 

expect from using a random landmark. In contrast, results are consistent with all three 

predictions if participants are just encoding the target location against the nearest single 

landmark. We interpret this to mean that landmarks are not used together in a Bayesian 

fashion to recall locations, at least in a situation where egocentric relations have been 

disrupted; instead, people use the nearest available landmark to code locations. This provides 



Adaptive Selection 40 
 

an immediate theoretical point: that the Adaptive Combination model, taken as a general 

theory of how multiple cues are used to reorient, is not as broadly applicable as one might 

have hoped. We propose considering the older Adaptive Selection model, which still allows 

young children to use superior cues in place of inferior cues when both are available, but not 

to use superior cues in Bayesian combination with inferior cues.  

To aid in interpretation, we need to point out a few things about the current study. Our 

focus was not particularly on the way that boundaries, including rectangular boundaries, are 

used to reorient. Instead, the goal of the design here was to find a situation where the 

predictions of a Bayesian cue combination model for reorientation could be clearly confirmed 

or discredited. Under our reading, Adaptive Combination is intended to be a flexible 

framework for the way that any set of valid cues are used to reorient – not just rectangular 

enclosures. To make the predictions of this framework as clear as possible in the present 

study, we used pairs of landmarks as cues. The results here speak against the general form of 

the Adaptive Combination model (especially Equation 1) as a way for any reorientation cues 

to combine for allocentric recall. For a researcher who is specifically interested in the use of 

rectangular enclosures, rather than a general theory of how reorientation happens, the new 

data presented here have a more modest interpretation. It could still be the case that other 

cues are used in a Bayesian fashion to reorient, perhaps even at young ages. We suggest 

holding off on that conclusion unless and until more evidence for it is found.  

We should also point out that a variation without disorientation did not appear to alter 

results. In other words, these results do not appear strictly limited to reorientation. Instead, 

they appear to apply to situations where egocentric relations are broken. It does appear that 

using landmarks to reorient is a non-Bayesian process, but it may make more sense to 

describe this in terms that are more general: landmarks are not used in a Bayesian process to 

recall locations when the use of the allocentric frame is forced.  
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Our re-analysis of previous data also suggests that geometric and associative cues are 

not combined in a Bayesian fashion by young children, but here we have to be more tentative. 

In the Introduction, we re-analysed previous data to compare performance in an associative-

only reorientation task versus an A+G (one uniquely colored wall in a rectangle) reorientation 

task. No difference was found. This does not fit well with the idea that the associative cue’s 

information is being combined in the optimal Bayesian manner with the geometric cue’s 

information. Instead, it suggests that the associative cue’s information is used in isolation. 

However, this analysis is far from ideal. For example, it uses between-subject data. In our 

view, this specific question remains open.   

It should also be pointed out that Adaptive Combination and Adaptive Selection can 

make nearly identical predictions in the right circumstances. For example, suppose a child is 

given a very strong associative cue (e.g. a very salient and non-symmetric picture on one 

wall) and a very weak geometric cue (e.g. a rectangular boundary with a length of 2m and a 

width of 2.05m). Adaptive Selection would select the associative cue and the child would 

perform as if they only had the associative cue. Adaptive Combination would weight the two 

cues together according to Equation 1 – but since the geometric cue is much weaker, it would 

receive negligible weight, and the results would not be measurably different to those based on 

using the associative cue alone. In general, the two theories make very similar predictions in 

any situation with one dominant reorientation cue. Differences can only become clear when 

there are multiple reorientation cues with comparable reliability.  

As far as we are aware, the present interpretation of an A+G condition is novel. In the 

developmental literature, it is well established that young children can use purely geometric 

cues to reorient (Lee, 2017). In interpreting the results of an A+G condition, the usual 

question has been whether the associative cue is used in concert with the geometric cue 

(Cheng et al., 2013; Hermer & Spelke, 1994). It could be the case that the associative cue is 
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used in isolation while ignoring the geometric cue – at least in situations with a relatively 

large room. (In a small room, in contrast, it is well established that performance is similar to 

only having the geometric cue.) It may be possible to test an exclusive reliance on the 

associative cue more directly in the future, but it would require some significant 

methodological innovations. Ideally, the same participants would complete a large number of 

A, G, and A+G condition trials. It is not obvious how to make the standard paradigm into 

something that will be tolerated by young children for significantly longer. Further, details of 

the method would need to be adjusted somehow to make A performance better-matched to G 

performance – perhaps by reducing the contrast of the associative cue and exaggerating the 

ratio of the rectangle’s lengths. Further, and perhaps most difficult, it is not clear how this 

kind of paradigm would differentiate Bayesian reasoning from other simpler models. For 

example, the information from the geometric and associative cue could be combined through 

conjunctive logic (e.g. search until finding a target that agrees with both remembered cues) 

rather than probabilistic Bayesian reasoning. This would also predict that A+G performance 

would be better than A performance. It may ultimately be more fruitful to move to new 

paradigms.  

To be as fair as possible to our colleagues (Xu et al., 2017), we should also note that 

the Adaptive Combination paper did not explicitly state its intention to apply to tasks with 

multiple landmarks (i.e. associative cues). Under our reading, they put forward a theory that 

tries to unify reorientation behaviour under single compact principle. Since this was a 

Bayesian model, we would ordinarily expect it to efficiently integrate all available cues – that 

is such a core feature of such models that it practically serves as a definition – and that this 

would include multiple associative cues. (They also did not say that it does not apply to 

multiple associative cues.) If the reader here disagrees with our reading of the Adaptive 

Combination model, then the present study should be taken as an examination of general 
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Bayesian principles in reorientation rather than a specific re-examination of the Adaptive 

Combination model.  

We should emphasize that Adaptive Combination is a recent extension of the adaptive 

behaviour position; rejecting Adaptive Combination does entail rejecting all adaptive 

explanations of how young children reorient. It should not be interpreted to mean that a 

modular theory (Hermer & Spelke, 1994), the usual contrast to an adaptive theory, should be 

preferred. It would require a very different kind of experiment to potentially show evidence 

for non-adaptive and modular cognition (Lee, 2017; Lee & Spelke, 2008, 2010). Instead, 

Adaptive Selection is more in line with the versions of adaptive theories proposed before 

Adaptive Combination (Cheng et al., 2013). In addition, while our results speak against 

Adaptive Combination as a general theory of spatial reorientation, it remains possible that it 

does apply to some situations – for example, recall that can include an egocentric process of 

homing (Jetzschke et al., 2017; Stürzl et al., 2008), or recall using other kinds of spatial cues 

(although see above on difficulties of testing these in a Bayesian framework).  

We should also note, in case there is any doubt, that Adaptive Selection can also 

explain all of the data cited by the Adaptive Combination paper as well (Hermer & Spelke, 

1996; Learmonth et al., 2002; Newcombe et al., 2010; Ratliff & Newcombe, 2008a, 2008b). 

This is simply because none of them test a condition with one cue alone, with another cue 

alone, and with both together. Most specifically test A+G conditions against G conditions. 

This always allows for performance in the A+G condition to be explained by use of the A cue 

alone. The others vary but can be explained with a similar argument, such as comparing an 

A+G condition to a condition with a language cue added (Ratliff & Newcombe, 2008a). 

Without individually testing the A cue, the G cue, and the language cue, it is impossible to 

rule out the hypothesis that performance in the combined condition is reliant on just one of 

the cues.  
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One interesting future direction would be to test the efficiency of cue selection in a 

setting where there are not just landmarks. If one landmark is further than another is, it is 

fairly clear that it will be less useful for encoding. If a young participant is asked to choose 

among a more diverse set of cues (e.g. including a linguistic cue), it is not yet known if they 

will consistently select the most useful cue.  

Another interesting future direction is to look more at the potential role of cue 

salience. The present study and the standard reorientation paradigm both use environments 

that are (much) less rich than many environments that exist outside the laboratory. It is 

possible that these processes would be meaningfully different in an environment with a great 

many visual cues, additional strong sensations, and a complex geometry. It is possible that 

participants might integrate multiple cues in a very rich and naturalistic environment as a way 

of compensating for the increased memory noise that such complexity would induce. It is 

also possible that participants might integrate multiple cues if their salience is greatly 

increased in comparison to the rest of the environment. In a selection model, things like 

visual salience (rather than distance to target) might be important for understanding cue 

selection.  

Towards a More General Theory 

 Here we outline how these results may drive us towards a more general theory of how 

reorientation happens with multiple cues. The present study provides an immediate empirical 

conclusion: children and adults select the nearest landmark to use in isolation for encoding 

targets during an allocentric reorientation task. A larger interpretive framework will require 

more research. To move this forward, we will sketch one (of many) plausible models to 

pursue and test further. In short, we consider that egocentric spatial information may typically 

be treated in a Bayesian manner after a certain point in development, sometime in middle 
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childhood; allocentric information, across the lifespan, may instead be processed with more 

idiosyncratic non-Bayesian heuristics.  

 That idea has three parts. First, egocentric spatial information is typically used in a 

Bayesian manner by adults. This fits in a variety of very simple perceptual tasks where 

participants are asked to make judgements about locations. For example, adults can combine 

a spatialized sound and a noisy visual cue to judge horizontal location in an egocentric frame 

(Battaglia et al., 2003; Gori et al., 2012). This also applies to newly-learned skills that signal 

egocentric distance, such as an echolocation-like skill taught over the course of a few hours 

(Negen, Wen, et al., 2018). This further applies in a navigation task where the two cues are 

vestibular and proprioceptive (Frissen et al., 2011). Adults also rapidly learn egocentric 

(sensorimotor) prior distributions and use them in a Bayesian fashion as well (Bejjanki et al., 

2016; Berniker et al., 2010; Chambers et al., 2018; Körding & Wolpert, 2004; Kwon & Knill, 

2013; Narain et al., 2013; Sato & Kording, 2014; Tassinari et al., 2006). In practice, this 

means that they learn where targets tend to be and bias their responses towards the places 

they tend to be most often. Finally, adults tend to adjust their search strategy in a visual 

search task when there is an uneven distribution of targets in an egocentric sense (Jiang & 

Swallow, 2013, 2014; Smith et al., 2010). This can be viewed as using egocentric prior 

distributions to affect decision-making.  

 Importantly, one could view self-motion and landmark information in a homing task 

as egocentric information. These are the cues and the task used in a series of studies where 

adults were fit well by a Bayesian model (Bates & Wolbers, 2014; Chen et al., 2017; Nardini 

et al., 2008; Sjolund et al., 2018; Zhao & Warren, 2015). The self-motion information could 

be viewed as an egocentric vector to the goal that is updated by perception of own movement. 

The landmark information, in this case, could be like an egocentric ‘snapshot’ of how the 

landmarks looked at the target (home) location (Cheung et al., 2008; Stürzl et al., 2008). In 
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other words, while landmarks are usually thought of as allocentric information, the specific 

way that landmarks looked from a previous home location could be stored in an egocentric 

format. This makes this finding fit with the idea that adults use egocentric information in a 

Bayesian fashion.  

 Of course, recent research has shown that this also faces some limits and 

suboptimalities (Rahnev & Denison, 2018) – many Bayesian processes are distorted under 

certain circumstances. For example, in one study, adults integrated multiple repeats of the 

same audio localization signal with lower-than-Bayesian efficiency (Jones, 2018). It is not 

clear exactly why this occurred, but adults’ performance was much nearer to optimal 

Bayesian integration when the signals were not exact repeats of each other. We should 

emphasize that it may be typical for egocentric information to be processed in a Bayesian 

way, but it will not be universal.  

 Second, egocentric spatial information is not used in a Bayesian manner by young 

children. This would explain their difficulty in making egocentric spatial judgements with an 

audio and a visual cue (Gori et al., 2012), difficulty combining self-motion and landmark 

information during a homing task (Nardini et al., 2008), and their difficulty in learning prior 

spatial distributions (Chambers et al., 2018). This fits more generally with the pattern of 

difficulty with Bayesian reasoning in a wide variety of settings (Burr & Gori, 2011).  

 Third, allocentric spatial information is not used in a Bayesian manner. This fits with 

all the findings here. Instead, what the participants did here appears to involve focusing on 

‘just enough’ of the allocentric spatial relations to uniquely encode the target location in 

principle. It could be that once a task involves allocentric computations, capacity for the 

number of cues that can be attended to becomes a major bottleneck. At that point, it may be 

more advantageous to focus attention on the way that a target relates to a single nearby 

landmark than to spread attention across an entire scene. This also fits with visual search 
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patterns in an allocentric frame. Participants do not tend to use the prior distribution to adjust 

their search strategies (Jiang & Swallow, 2013, 2014; Smith et al., 2010). This is, again, ‘just 

enough’ – learning the prior distribution does not affect the participant’s ability to complete 

the task; it only makes it faster to do so. It may be that allocentric reasoning is too slow for it 

to affect the way the visual search task is completed. In general, the complexities of the 

representations required for allocentric reasoning may be too slow and too costly to be a good 

application of Bayesian reasoning. That may be reserved instead for mature egocentric 

reasoning.  

Conclusion 

The present study was designed further test predictions from the adaptive cue 

combination model of human spatial reorientation, understood here as a general model of 

how multiple cues are used to retrieve vectors to goal locations after losing one’s sense of 

heading and placement in a space. The results suggest that this theory needs modification 

since the optimal Bayesian predictions were consistently violated. Instead, response patterns 

were more consistent with a heuristic of only using the nearest single landmark (ignoring 

other landmarks rather than combining their information in a Bayesian fashion). Further, 

results are similar if egocentric relations are disrupted through a method without 

disorientation. As a sketch of a broader theory for further testing, we suggest that egocentric 

information may typically be used with Bayesian efficiency after middle childhood 

(emerging from roughly 7 to 12 years depending on task details), but that allocentric 

information is processed using non-Bayesian heuristics even into adulthood.  
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Appendix 

 To be as sure as possible about the predictions, we also simulated each model. The 

Matlab code is shown below. We assume that the precision of a single-cue response decays 

exponentially with the distance to the nearest target. Results are shown in Figure S1. The 

Random model (blue/left bars) chooses which cue to use as at random for dual-cue trials. The 

Selection model (orange/middle bars) chooses the single cue with the highest precision for 

dual-cue trials. The Combination model (yellow/right bars) creates a precision-weighted 

average on dual-cue trials. The top two rows of Figure S1 show that only the Combination 

model achieves the optimal variable error (black dot). The bottom left shows that NSEW 

accuracy equals NS or EW accuracy for the Random model, but NSEW accuracy is better 

than NS or EW accuracy for the other two models. The bottom right shows that NSEW 

accuracy is worse than Near accuracy for Random, equal for Selection, and better for 

Combination. Note how the patterns in the orange/middle bars are the same as the actual data.  
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Figure S1. Simulation results used to verify the predictions in the main text. 

 

Here is the simulation code (Matlab 2019b):  

%Size of simulation and parameters 
nDataPerTarget = 100000;  
EWLandmarksX = [3, -3];  
EWLandmarksY = [0, 0];  
NSLandmarksX = [0, 0];  
NSLandmarksY = [3, -3];  
[X,Y] = meshgrid(-2:2, -2:2); Targets = [X(:),Y(:)];  

  
%Mechanism for decay of precision by distance 
BasePrecision = 10;  
PrecisionDecayBeta = .5; 
DistanceToPrecision = @(distance) BasePrecision .* exp(-PrecisionDecayBeta.*distance);  

  
%Pre-Calculate precisions or each target 
PrecisionEW = NaN(size(Targets,1),1);  
PrecisionNS = NaN(size(Targets,1),1);  
for i = 1:length(PrecisionEW) 
    DistanceE = sqrt( (Targets(i,1)-EWLandmarksX(1)).^2 + (Targets(i,2)-EWLandmarksY(1)).^2 );  
    DistanceW = sqrt( (Targets(i,1)-EWLandmarksX(2)).^2 + (Targets(i,2)-EWLandmarksY(2)).^2 ); 
    PrecisionEW(i) = DistanceToPrecision( min(DistanceE,DistanceW) );  

     
    DistanceN = sqrt( (Targets(i,1)-NSLandmarksX(1)).^2 + (Targets(i,2)-NSLandmarksY(1)).^2 );  
    DistanceS = sqrt( (Targets(i,1)-NSLandmarksX(2)).^2 + (Targets(i,2)-NSLandmarksY(2)).^2 ); 
    PrecisionNS(i) = DistanceToPrecision( min(DistanceN,DistanceS) );  
end 
StandardDevEW = PrecisionEW .^ (-1/2);  
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StandardDevNS = PrecisionNS .^ (-1/2);  

  
%Simulate trials 
%Pre-allocate 
target = NaN(nDataPerTarget*size(Targets,1)*3,2); 
response = target;  
isNear = false(nDataPerTarget*size(Targets,1)*3,1); 
isNSEW = isNear; isNSorEW = isNear; isEW = isNear; isNS = isNear;   
%Simulate 
for modelNumber = 1:3 
    IND = 1; 
    for repeat = 1:nDataPerTarget 
        for targetNumber = 1:size(Targets,1) 
            for trialType = 1:3 %Trial types: EW, NS, NSEW 

                 
                target(IND,:) = Targets(targetNumber,:); 
                isNear(IND,1) = (trialType==1 && abs(target(IND,1))>=abs(target(IND,2))) || 

... 
                    (trialType==2 && abs(target(IND,2))>=abs(target(IND,1))); 
                isNSEW(IND,1) = trialType == 3; 
                isNSorEW(IND,1) = trialType ~= 3; 
                isEW(IND,1) = trialType == 1; 
                isNS(IND,1) = trialType == 2; 

                 
                if trialType == 1 %EW Trial 
                    response(IND,:) = target(IND,:) + randn(1,2) .* 

StandardDevEW(targetNumber);  
                elseif trialType == 2 %NS Trial  
                    response(IND,:) = target(IND,:) + randn(1,2) .* 

StandardDevNS(targetNumber);  
                else %NSEW Trial 
                    if modelNumber == 1 %Random 
                        if rand(1) < .5 
                            response(IND,:) = target(IND,:) + randn(1,2) .* 

StandardDevEW(targetNumber);  
                        else 
                            response(IND,:) = target(IND,:) + randn(1,2) .* 

StandardDevNS(targetNumber);  
                        end 
                    elseif modelNumber == 2 %Selection 
                        response(IND,:) = target(IND,:) + randn(1,2) .* 

min(StandardDevEW(targetNumber),StandardDevNS(targetNumber));  
                    else %Combination 
                        tmpEW = target(IND,:) + randn(1,2) .* StandardDevEW(targetNumber); 
                        tmpNS = target(IND,:) + randn(1,2) .* StandardDevNS(targetNumber);  
                        wEW = PrecisionEW(targetNumber) / 

(PrecisionEW(targetNumber)+PrecisionNS(targetNumber));  
                        wNS = 1 - wEW;  
                        response(IND,:) = tmpEW.*wEW + tmpNS.*wNS;  
                    end 
                end 

                 
                IND = IND + 1;  

                 
            end 
        end 
    end 
    %Produce summaries 
    VariableErrorEW(modelNumber,1) = std(response(isEW,1)  -target(isEW,1)); 
    VariableErrorEW(modelNumber,2) = std(response(isNS,1)  -target(isNS,1)); 
    VariableErrorEW(modelNumber,3) = std(response(isNSEW,1)-target(isNSEW,1)); 

     
    VariableErrorNS(modelNumber,1) = std(response(isEW,2)  -target(isEW,2)); 
    VariableErrorNS(modelNumber,2) = std(response(isNS,2)  -target(isNS,2)); 
    VariableErrorNS(modelNumber,3) = std(response(isNSEW,2)-target(isNSEW,2)); 

     
    NSEWAccuracy(modelNumber,1) = mean(sqrt( (target(isNSEW,1)-response(isNSEW,1)).^2 + ...  
        (target(isNSEW,2)-response(isNSEW,2)).^2 )); 
    NSorEWAccuracy(modelNumber,1) = mean(sqrt( (target(isNSorEW,1)-response(isNSorEW,1)).^2 + 

...  
        (target(isNSorEW,2)-response(isNSorEW,2)).^2 )); 
    NearAccuracy(modelNumber,1) = mean(sqrt( (target(isNear,1)-response(isNear,1)).^2 + ...  
        (target(isNear,2)-response(isNear,2)).^2 )); 

     
end 
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%Display results 
%EW VE 
subplot(2,2,1); hold on 
h = bar(VariableErrorEW'); 
ylabel('Variable Error') 
set(gca,'XTick',1:3) 
set(gca,'XTickLabel',{'EW','NS','NSEW'}) 
plot(3, (mean(mean(VariableErrorEW(:,2:3))).^-2.*2).^(-1/2), 'ko', 'MarkerFaceColor','k') 
title('E/W Axis') 
legend('Random','Selection','Combination','Optimal','location','SouthEast') 

  
%NS VE 
subplot(2,2,2); hold on 
bar(VariableErrorNS') 
ylabel('Variable Error') 
set(gca,'XTick',1:3) 
set(gca,'XTickLabel',{'EW','NS','NSEW'}) 
plot(3, (mean(mean(VariableErrorNS(:,2:3))).^-2.*2).^(-1/2), 'ko', 'MarkerFaceColor','k') 
title('N/S Axis') 

  
%NSEW vs NSorEW Accuracy 
subplot(2,2,3) 
bar([NSEWAccuracy, NSorEWAccuracy]') 
set(gca,'XTick',1:3) 
set(gca,'XTickLabel',{'NSEW','NS or EW'}) 
ylabel('Mean Error') 

  
%NSEW vs Near Accuracy 
subplot(2,2,4) 
bar([NSEWAccuracy, NearAccuracy]') 
set(gca,'XTick',1:3) 
set(gca,'XTickLabel',{'NSEW','Near'}) 
ylabel('Mean Error') 

 


